Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

What is [tex]$3\binom{2}{5}$[/tex] written as a column vector?

Sagot :

Certainly! Let's solve the problem step by step.

1. Understand the problem: We are asked to multiply a binomial vector by a scalar and represent it as a column vector. The binomial vector in this case is [tex]\(\binom{2}{5}\)[/tex], and the scalar is [tex]\(3\)[/tex].

2. Identify the elements: The binomial vector has two elements: [tex]\(2\)[/tex] and [tex]\(5\)[/tex], and the scalar given is [tex]\(3\)[/tex].

3. Multiply the scalar with each element:
- Multiply the scalar [tex]\(3\)[/tex] with the first element of the binomial vector:
[tex]\[ 3 \times 2 = 6 \][/tex]
- Multiply the scalar [tex]\(3\)[/tex] with the second element of the binomial vector:
[tex]\[ 3 \times 5 = 15 \][/tex]

4. Formulate the column vector: To write this as a column vector, we place each of the resulting numbers in a vertical arrangement:
[tex]\[ \begin{pmatrix} 6 \\ 15 \end{pmatrix} \][/tex]

So, the scalar [tex]\(3\)[/tex] multiplied by the binomial vector [tex]\(\binom{2}{5}\)[/tex] written as a column vector is:
[tex]\[ \begin{pmatrix} 6 \\ 15 \end{pmatrix} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.