At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

An egg is thrown downward at [tex]$3.15 \, \text{m/s}$[/tex] from the roof of a [tex]27.5 \, \text{m}$[/tex] tall building.

What is the final velocity of the egg just before it hits the ground?

[tex]v_{f} = [\text{?}] \, \text{m/s}[/tex]

Do not account for air resistance. Remember, velocity downward is a negative vector [tex](-)[/tex].


Sagot :

Certainly! To determine the final velocity of an egg thrown downward from a roof, we can use the kinematic equations of motion. Let's break the problem into clear steps.

Given:
- Initial velocity, [tex]\(v_i = 3.15 \, \text{m/s}\)[/tex] (downward)
- Height (distance), [tex]\(h = 27.5 \, \text{m}\)[/tex]
- Acceleration due to gravity, [tex]\(a = 9.81 \, \text{m/s}^2\)[/tex] (downward)

Since the direction of the throw and gravity are both downward, we will consider downward direction as negative in our calculations.

Step-by-Step Solution:

1. Identify the kinematic equation:
The kinematic equation that relates initial velocity ([tex]\(v_i\)[/tex]), final velocity ([tex]\(v_f\)[/tex]), acceleration ([tex]\(a\)[/tex]), and distance ([tex]\(d\)[/tex]) is:
[tex]\[ v_f^2 = v_i^2 + 2ad \][/tex]

2. Substitute the known values into the equation:
[tex]\[ v_f^2 = (3.15 \, \text{m/s})^2 + 2 \cdot (9.81 \, \text{m/s}^2) \cdot (27.5 \, \text{m}) \][/tex]

3. Calculate the intermediate value [tex]\(v_f^2\)[/tex]:
[tex]\[ v_f^2 = 9.9225 + 538.55 \][/tex]
[tex]\[ v_f^2 = 548.4725 \, \text{m}^2/\text{s}^2 \][/tex]

4. Find the final velocity [tex]\(v_f\)[/tex]:
To find [tex]\(v_f\)[/tex], take the square root of [tex]\(v_f^2\)[/tex]:
[tex]\[ v_f = - \sqrt{548.4725} \][/tex]
Since the motion is downward, we take the negative value for the velocity:
[tex]\[ v_f = - 23.440829763470408 \, \text{m/s} \][/tex]

Conclusion:
The final velocity of the egg just before it hits the ground is:
[tex]\[ v_f \approx -23.44 \, \text{m/s} \][/tex]
This negative sign indicates that the velocity is indeed directed downward.