At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's focus on calculating the diagonal of Models 1 and 2 using the provided heights and radii. The vertical cross-sections of these cylindrical models form right-angled triangles, where the height and radius are the legs, and the diagonal is the hypotenuse.
### For Model 1:
- Height ([tex]\(h_1\)[/tex]): 48 cm
- Radius ([tex]\(r_1\)[/tex]): 14 cm
- Diagonal given ([tex]\(d_1\)[/tex]): 50 cm
To verify if the given diagonal matches the height and radius, we use the Pythagorean theorem:
[tex]\[ d_1 = \sqrt{h_1^2 + r_1^2} \][/tex]
Plugging in the values:
[tex]\[ d_1 = \sqrt{48^2 + 14^2} \][/tex]
[tex]\[ d_1 = \sqrt{2304 + 196} \][/tex]
[tex]\[ d_1 = \sqrt{2500} \][/tex]
[tex]\[ d_1 = 50 \text{ cm} \][/tex]
Thus, for Model 1, the calculated diagonal is 50 cm, which matches the given diagonal.
### For Model 2:
- Height ([tex]\(h_2\)[/tex]): 35 cm
- Radius ([tex]\(r_2\)[/tex]): 6 cm
- Diagonal given ([tex]\(d_2\)[/tex]): 37 cm
Similarly, we use the Pythagorean theorem to find the diagonal:
[tex]\[ d_2 = \sqrt{h_2^2 + r_2^2} \][/tex]
Plugging in the values:
[tex]\[ d_2 = \sqrt{35^2 + 6^2} \][/tex]
[tex]\[ d_2 = \sqrt{1225 + 36} \][/tex]
[tex]\[ d_2 = \sqrt{1261} \][/tex]
[tex]\[ d_2 \approx 35.51 \text{ cm} \][/tex]
Thus, for Model 2, the calculated diagonal is approximately 35.51 cm, which is slightly less than the given diagonal of 37 cm.
### Summary:
- Model 1: The calculated diagonal is 50 cm, which matches the given diagonal.
- Model 2: The calculated diagonal is approximately 35.51 cm, which does not exactly match the given diagonal of 37 cm.
This step-by-step analysis confirms the match for Model 1 and highlights the slight discrepancy for Model 2.
### For Model 1:
- Height ([tex]\(h_1\)[/tex]): 48 cm
- Radius ([tex]\(r_1\)[/tex]): 14 cm
- Diagonal given ([tex]\(d_1\)[/tex]): 50 cm
To verify if the given diagonal matches the height and radius, we use the Pythagorean theorem:
[tex]\[ d_1 = \sqrt{h_1^2 + r_1^2} \][/tex]
Plugging in the values:
[tex]\[ d_1 = \sqrt{48^2 + 14^2} \][/tex]
[tex]\[ d_1 = \sqrt{2304 + 196} \][/tex]
[tex]\[ d_1 = \sqrt{2500} \][/tex]
[tex]\[ d_1 = 50 \text{ cm} \][/tex]
Thus, for Model 1, the calculated diagonal is 50 cm, which matches the given diagonal.
### For Model 2:
- Height ([tex]\(h_2\)[/tex]): 35 cm
- Radius ([tex]\(r_2\)[/tex]): 6 cm
- Diagonal given ([tex]\(d_2\)[/tex]): 37 cm
Similarly, we use the Pythagorean theorem to find the diagonal:
[tex]\[ d_2 = \sqrt{h_2^2 + r_2^2} \][/tex]
Plugging in the values:
[tex]\[ d_2 = \sqrt{35^2 + 6^2} \][/tex]
[tex]\[ d_2 = \sqrt{1225 + 36} \][/tex]
[tex]\[ d_2 = \sqrt{1261} \][/tex]
[tex]\[ d_2 \approx 35.51 \text{ cm} \][/tex]
Thus, for Model 2, the calculated diagonal is approximately 35.51 cm, which is slightly less than the given diagonal of 37 cm.
### Summary:
- Model 1: The calculated diagonal is 50 cm, which matches the given diagonal.
- Model 2: The calculated diagonal is approximately 35.51 cm, which does not exactly match the given diagonal of 37 cm.
This step-by-step analysis confirms the match for Model 1 and highlights the slight discrepancy for Model 2.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.