Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's focus on calculating the diagonal of Models 1 and 2 using the provided heights and radii. The vertical cross-sections of these cylindrical models form right-angled triangles, where the height and radius are the legs, and the diagonal is the hypotenuse.
### For Model 1:
- Height ([tex]\(h_1\)[/tex]): 48 cm
- Radius ([tex]\(r_1\)[/tex]): 14 cm
- Diagonal given ([tex]\(d_1\)[/tex]): 50 cm
To verify if the given diagonal matches the height and radius, we use the Pythagorean theorem:
[tex]\[ d_1 = \sqrt{h_1^2 + r_1^2} \][/tex]
Plugging in the values:
[tex]\[ d_1 = \sqrt{48^2 + 14^2} \][/tex]
[tex]\[ d_1 = \sqrt{2304 + 196} \][/tex]
[tex]\[ d_1 = \sqrt{2500} \][/tex]
[tex]\[ d_1 = 50 \text{ cm} \][/tex]
Thus, for Model 1, the calculated diagonal is 50 cm, which matches the given diagonal.
### For Model 2:
- Height ([tex]\(h_2\)[/tex]): 35 cm
- Radius ([tex]\(r_2\)[/tex]): 6 cm
- Diagonal given ([tex]\(d_2\)[/tex]): 37 cm
Similarly, we use the Pythagorean theorem to find the diagonal:
[tex]\[ d_2 = \sqrt{h_2^2 + r_2^2} \][/tex]
Plugging in the values:
[tex]\[ d_2 = \sqrt{35^2 + 6^2} \][/tex]
[tex]\[ d_2 = \sqrt{1225 + 36} \][/tex]
[tex]\[ d_2 = \sqrt{1261} \][/tex]
[tex]\[ d_2 \approx 35.51 \text{ cm} \][/tex]
Thus, for Model 2, the calculated diagonal is approximately 35.51 cm, which is slightly less than the given diagonal of 37 cm.
### Summary:
- Model 1: The calculated diagonal is 50 cm, which matches the given diagonal.
- Model 2: The calculated diagonal is approximately 35.51 cm, which does not exactly match the given diagonal of 37 cm.
This step-by-step analysis confirms the match for Model 1 and highlights the slight discrepancy for Model 2.
### For Model 1:
- Height ([tex]\(h_1\)[/tex]): 48 cm
- Radius ([tex]\(r_1\)[/tex]): 14 cm
- Diagonal given ([tex]\(d_1\)[/tex]): 50 cm
To verify if the given diagonal matches the height and radius, we use the Pythagorean theorem:
[tex]\[ d_1 = \sqrt{h_1^2 + r_1^2} \][/tex]
Plugging in the values:
[tex]\[ d_1 = \sqrt{48^2 + 14^2} \][/tex]
[tex]\[ d_1 = \sqrt{2304 + 196} \][/tex]
[tex]\[ d_1 = \sqrt{2500} \][/tex]
[tex]\[ d_1 = 50 \text{ cm} \][/tex]
Thus, for Model 1, the calculated diagonal is 50 cm, which matches the given diagonal.
### For Model 2:
- Height ([tex]\(h_2\)[/tex]): 35 cm
- Radius ([tex]\(r_2\)[/tex]): 6 cm
- Diagonal given ([tex]\(d_2\)[/tex]): 37 cm
Similarly, we use the Pythagorean theorem to find the diagonal:
[tex]\[ d_2 = \sqrt{h_2^2 + r_2^2} \][/tex]
Plugging in the values:
[tex]\[ d_2 = \sqrt{35^2 + 6^2} \][/tex]
[tex]\[ d_2 = \sqrt{1225 + 36} \][/tex]
[tex]\[ d_2 = \sqrt{1261} \][/tex]
[tex]\[ d_2 \approx 35.51 \text{ cm} \][/tex]
Thus, for Model 2, the calculated diagonal is approximately 35.51 cm, which is slightly less than the given diagonal of 37 cm.
### Summary:
- Model 1: The calculated diagonal is 50 cm, which matches the given diagonal.
- Model 2: The calculated diagonal is approximately 35.51 cm, which does not exactly match the given diagonal of 37 cm.
This step-by-step analysis confirms the match for Model 1 and highlights the slight discrepancy for Model 2.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.