At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Consider the sequence of numbers: [tex]\frac{3}{8}, \frac{3}{4}, 1 \frac{1}{8}, 1 \frac{1}{2}, 1 \frac{7}{8}, \ldots[/tex]

Which statement is a description of the sequence?

A. The sequence is recursive, where each term is [tex]\frac{1}{4}[/tex] greater than its preceding term.
B. The sequence is recursive and can be represented by the function [tex]f(n+1)=f(n)+\frac{3}{8}[/tex].
C. The sequence is arithmetic, where each pair of terms has a constant difference of [tex]\frac{3}{4}[/tex].
D. The sequence is arithmetic and can be represented by the function [tex]f(n+1)=f(n)\left(\frac{3}{8}\right)[/tex].

Sagot :

Let's analyze the given sequence of numbers: [tex]\(\frac{3}{8}, \frac{3}{4}, 1 \frac{1}{8}, 1 \frac{1}{2}, 1 \frac{7}{8}, \ldots\)[/tex].

To understand the nature of this sequence, we first convert the mixed fractions to improper fractions:

1. [tex]\( \frac{3}{8} \)[/tex]
2. [tex]\( \frac{3}{4} = \frac{6}{8} \)[/tex]
3. [tex]\( 1 \frac{1}{8} = \frac{9}{8} \)[/tex]
4. [tex]\( 1 \frac{1}{2} = \frac{12}{8} \)[/tex]
5. [tex]\( 1 \frac{7}{8} = \frac{15}{8} \)[/tex]

Next, we will determine the differences between each consecutive term to check for arithmetic properties:

1. Difference between [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{3}{8}\)[/tex]:
[tex]\[ \frac{6}{8} - \frac{3}{8} = \frac{3}{8} \][/tex]

2. Difference between [tex]\(1 \frac{1}{8}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \frac{9}{8} - \frac{6}{8} = \frac{3}{8} \][/tex]

3. Difference between [tex]\(1 \frac{1}{2}\)[/tex] and [tex]\(1 \frac{1}{8}\)[/tex]:
[tex]\[ \frac{12}{8} - \frac{9}{8} = \frac{3}{8} \][/tex]

4. Difference between [tex]\(1 \frac{7}{8}\)[/tex] and [tex]\(1 \frac{1}{2}\)[/tex]:
[tex]\[ \frac{15}{8} - \frac{12}{8} = \frac{3}{8} \][/tex]

We observe that each consecutive term in the sequence has a common difference of [tex]\(\frac{3}{8}\)[/tex].

However, earlier results showed the actual difference is [tex]\(\frac{3}{8} = 0.375\)[/tex] consistently, but verifying this detail with the required precision confirms this unique sequence properties which mention consistent equal increments.

Upon further review of the options:
1. The statement "The sequence is recursive, where each term is [tex]\(\frac{1}{4}\)[/tex] greater than its preceding term" is incorrect.
2. The statement "The sequence is recursive and can be represented by the function [tex]\(f(n+1) = f(n) + \frac{3}{8}\)[/tex]" accurately describes the pattern of differences.
3. The statement "The sequence is arithmetic, where each pair of terms has a constant difference of [tex]\(\frac{3}{4}\)[/tex]" is incorrect (the common difference is [tex]\(\frac{3}{8}\)[/tex]).
4. The statement "The sequence is arithmetic and can be represented by the function [tex]\(f(n+1) = f(n)\left(\frac{3}{8}\right)\)[/tex]" is incorrect as it suggests a multiplicative pattern instead of additive.

Thus,
- The correct description of the sequence fits the second statement: "The sequence is recursive and can be represented by the function [tex]\(f(n+1) = f(n) + \frac{3}{8}\)[/tex]".