Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's analyze each equation step-by-step to determine which ones have no solutions.
1. [tex]$-|x|=0$[/tex]
[tex]\[ |x| \text{ is the absolute value of } x, \text{ which is always non-negative.} \][/tex]
If [tex]$-|x|=0$[/tex], then [tex]$x$[/tex] must be [tex]$0$[/tex] because:
[tex]\[ -|0| = -0 = 0 \][/tex]
Equation [tex]\(1\)[/tex] does have a solution: [tex]\(x = 0\)[/tex].
2. [tex]$|x|=-15$[/tex]
[tex]\[ |x| \text{ represents the absolute value of } x, \text{ which is always non-negative.} \][/tex]
Thus, [tex]$|x|$[/tex] cannot be equal to a negative value. Therefore:
[tex]\[ |x| = -15 \quad \text{has no solution.} \][/tex]
3. [tex]$-|x|=12$[/tex]
[tex]\[ -|x| \text{ indicates the negation of the absolute value of } x. \][/tex]
Since [tex]$|x|$[/tex] is always non-negative, [tex]$-|x|$[/tex] is always non-positive. This means it can never be equal to a positive number:
[tex]\[ -|x| = 12 \quad \text{has no solution.} \][/tex]
4. [tex]$-|-x|=9$[/tex]
[tex]\[ |-x| \text{ is equal to } |x|, \text{ since the absolute value of a number is always positive regardless of its sign.} \][/tex]
Thus, [tex]$-|x|$[/tex] is non-positive and cannot be equal to a positive number:
[tex]\[ -|-x| = 9 \quad \text{has no solution.} \][/tex]
5. [tex]$-|-x|=-2$[/tex]
[tex]\[ -|-x| \text{ equals } -|x| \text{, which is always non-positive.} \][/tex]
Although [tex]$-|-x|$[/tex] can indeed be equal to a non-positive number, it would mean [tex]$|x| = 2$[/tex]. Thus:
\]
\quad -|-x| = -|x| = -2.
[tex]\[ \quad \text{has a solution in this case.} So, the equations that have no solution are: \[ \boxed{2, 3, 4} \][/tex]
1. [tex]$-|x|=0$[/tex]
[tex]\[ |x| \text{ is the absolute value of } x, \text{ which is always non-negative.} \][/tex]
If [tex]$-|x|=0$[/tex], then [tex]$x$[/tex] must be [tex]$0$[/tex] because:
[tex]\[ -|0| = -0 = 0 \][/tex]
Equation [tex]\(1\)[/tex] does have a solution: [tex]\(x = 0\)[/tex].
2. [tex]$|x|=-15$[/tex]
[tex]\[ |x| \text{ represents the absolute value of } x, \text{ which is always non-negative.} \][/tex]
Thus, [tex]$|x|$[/tex] cannot be equal to a negative value. Therefore:
[tex]\[ |x| = -15 \quad \text{has no solution.} \][/tex]
3. [tex]$-|x|=12$[/tex]
[tex]\[ -|x| \text{ indicates the negation of the absolute value of } x. \][/tex]
Since [tex]$|x|$[/tex] is always non-negative, [tex]$-|x|$[/tex] is always non-positive. This means it can never be equal to a positive number:
[tex]\[ -|x| = 12 \quad \text{has no solution.} \][/tex]
4. [tex]$-|-x|=9$[/tex]
[tex]\[ |-x| \text{ is equal to } |x|, \text{ since the absolute value of a number is always positive regardless of its sign.} \][/tex]
Thus, [tex]$-|x|$[/tex] is non-positive and cannot be equal to a positive number:
[tex]\[ -|-x| = 9 \quad \text{has no solution.} \][/tex]
5. [tex]$-|-x|=-2$[/tex]
[tex]\[ -|-x| \text{ equals } -|x| \text{, which is always non-positive.} \][/tex]
Although [tex]$-|-x|$[/tex] can indeed be equal to a non-positive number, it would mean [tex]$|x| = 2$[/tex]. Thus:
\]
\quad -|-x| = -|x| = -2.
[tex]\[ \quad \text{has a solution in this case.} So, the equations that have no solution are: \[ \boxed{2, 3, 4} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.