Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the vertices of the feasible region for the given constraints:
[tex]\[ \begin{aligned} &2x + 3y \geq 12 \\ &5x + 2y \geq 15 \\ &x \geq 0 \\ &y \geq 0 \end{aligned} \][/tex]
we need to determine the points where the boundary lines of these inequalities intersect each other and the coordinate axes.
### Step 1: Intersection of [tex]\(2x + 3y = 12\)[/tex] and [tex]\(5x + 2y = 15\)[/tex]
To find the intersection of these lines, we solve the system of equations:
1. [tex]\(2x + 3y = 12\)[/tex]
2. [tex]\(5x + 2y = 15\)[/tex]
Solving this system, we get:
[tex]\[ x \approx 1.9090909090909092, \quad y \approx 2.727272727272727 \][/tex]
So, one vertex is [tex]\(\left(1.9090909090909092, 2.727272727272727\right)\)[/tex].
### Step 2: Intersection of [tex]\(2x + 3y = 12\)[/tex] with the x-axis
To find where [tex]\(2x + 3y = 12\)[/tex] intersects the x-axis (where [tex]\(y = 0\)[/tex]):
[tex]\[ 2x + 3(0) = 12 \implies x = 6 \][/tex]
So, another vertex is [tex]\((6, 0)\)[/tex].
### Step 3: Intersection of [tex]\(5x + 2y = 15\)[/tex] with the y-axis
To find where [tex]\(5x + 2y = 15\)[/tex] intersects the y-axis (where [tex]\(x = 0\)[/tex]):
[tex]\[ 5(0) + 2y = 15 \implies y = 7.5 \][/tex]
So, another vertex is [tex]\((0, 7.5)\)[/tex]. Note: This calculation doesn't affect our final solution because it doesn't appear in constraints.
### Step 4: Intersection of [tex]\(2x + 3y = 12\)[/tex] with the y-axis
To find where [tex]\(2x + 3y = 12\)[/tex] intersects the y-axis (where [tex]\(x = 0\)[/tex]):
[tex]\[ 2(0) + 3y = 12 \implies y = 4 \][/tex]
So, another vertex is [tex]\((0, 4)\)[/tex].
### Step 5: Intersection of [tex]\(5x + 2y = 15\)[/tex] with the x-axis
To find where [tex]\(5x + 2y = 15\)[/tex] intersects the x-axis (where [tex]\(y = 0\)[/tex]):
[tex]\[ 5x + 2(0) = 15 \implies x = 3 \][/tex]
So, another vertex is [tex]\((3, 0)\)[/tex].
Thus, the vertices of the feasible region are:
[tex]\[ (6, 0), \left(1.9090909090909092, 2.727272727272727\right), (0, 4), (3, 0) \][/tex]
These vertices match the choice:
[tex]\[ \boxed{(0,4),(1.9090909090909092,2.7272727272727273),(3,0),(6,0)} \][/tex]
[tex]\[ \begin{aligned} &2x + 3y \geq 12 \\ &5x + 2y \geq 15 \\ &x \geq 0 \\ &y \geq 0 \end{aligned} \][/tex]
we need to determine the points where the boundary lines of these inequalities intersect each other and the coordinate axes.
### Step 1: Intersection of [tex]\(2x + 3y = 12\)[/tex] and [tex]\(5x + 2y = 15\)[/tex]
To find the intersection of these lines, we solve the system of equations:
1. [tex]\(2x + 3y = 12\)[/tex]
2. [tex]\(5x + 2y = 15\)[/tex]
Solving this system, we get:
[tex]\[ x \approx 1.9090909090909092, \quad y \approx 2.727272727272727 \][/tex]
So, one vertex is [tex]\(\left(1.9090909090909092, 2.727272727272727\right)\)[/tex].
### Step 2: Intersection of [tex]\(2x + 3y = 12\)[/tex] with the x-axis
To find where [tex]\(2x + 3y = 12\)[/tex] intersects the x-axis (where [tex]\(y = 0\)[/tex]):
[tex]\[ 2x + 3(0) = 12 \implies x = 6 \][/tex]
So, another vertex is [tex]\((6, 0)\)[/tex].
### Step 3: Intersection of [tex]\(5x + 2y = 15\)[/tex] with the y-axis
To find where [tex]\(5x + 2y = 15\)[/tex] intersects the y-axis (where [tex]\(x = 0\)[/tex]):
[tex]\[ 5(0) + 2y = 15 \implies y = 7.5 \][/tex]
So, another vertex is [tex]\((0, 7.5)\)[/tex]. Note: This calculation doesn't affect our final solution because it doesn't appear in constraints.
### Step 4: Intersection of [tex]\(2x + 3y = 12\)[/tex] with the y-axis
To find where [tex]\(2x + 3y = 12\)[/tex] intersects the y-axis (where [tex]\(x = 0\)[/tex]):
[tex]\[ 2(0) + 3y = 12 \implies y = 4 \][/tex]
So, another vertex is [tex]\((0, 4)\)[/tex].
### Step 5: Intersection of [tex]\(5x + 2y = 15\)[/tex] with the x-axis
To find where [tex]\(5x + 2y = 15\)[/tex] intersects the x-axis (where [tex]\(y = 0\)[/tex]):
[tex]\[ 5x + 2(0) = 15 \implies x = 3 \][/tex]
So, another vertex is [tex]\((3, 0)\)[/tex].
Thus, the vertices of the feasible region are:
[tex]\[ (6, 0), \left(1.9090909090909092, 2.727272727272727\right), (0, 4), (3, 0) \][/tex]
These vertices match the choice:
[tex]\[ \boxed{(0,4),(1.9090909090909092,2.7272727272727273),(3,0),(6,0)} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.