Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the volume of a gold nugget given its mass and density, we will use the density formula and solve for the volume.
The formula for density is:
[tex]\[ D = \frac{m}{v} \][/tex]
where:
[tex]\( D \)[/tex] is the density,
[tex]\( m \)[/tex] is the mass,
[tex]\( v \)[/tex] is the volume.
Given:
- The density of gold [tex]\( D = 19.3 \, \text{g/cm}^3 \)[/tex]
- The mass of the gold nugget [tex]\( m = 13 \, \text{g} \)[/tex]
We need to solve for the volume [tex]\( v \)[/tex]. Rearranging the density formula to solve for volume, we get:
[tex]\[ v = \frac{m}{D} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ v = \frac{13 \, \text{g}}{19.3 \, \text{g/cm}^3} \][/tex]
Performing the division:
[tex]\[ v \approx 0.6735751295336787 \, \text{cm}^3 \][/tex]
Therefore, the volume of the [tex]$13 \, \text{g}$[/tex] gold nugget is approximately:
[tex]\[ 0.67 \, \text{cm}^3 \][/tex]
Among the multiple-choice options provided:
- \[tex]$0.25 \,\text{cm}^3\$[/tex]
- \[tex]$0.67 \,\text{cm}^3\$[/tex]
- \[tex]$1.48 \,\text{cm}^3\$[/tex]
- \[tex]$2.50 \,\text{cm}^3\$[/tex]
The correct answer is:
[tex]\[ 0.67 \, \text{cm}^3 \][/tex]
The formula for density is:
[tex]\[ D = \frac{m}{v} \][/tex]
where:
[tex]\( D \)[/tex] is the density,
[tex]\( m \)[/tex] is the mass,
[tex]\( v \)[/tex] is the volume.
Given:
- The density of gold [tex]\( D = 19.3 \, \text{g/cm}^3 \)[/tex]
- The mass of the gold nugget [tex]\( m = 13 \, \text{g} \)[/tex]
We need to solve for the volume [tex]\( v \)[/tex]. Rearranging the density formula to solve for volume, we get:
[tex]\[ v = \frac{m}{D} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ v = \frac{13 \, \text{g}}{19.3 \, \text{g/cm}^3} \][/tex]
Performing the division:
[tex]\[ v \approx 0.6735751295336787 \, \text{cm}^3 \][/tex]
Therefore, the volume of the [tex]$13 \, \text{g}$[/tex] gold nugget is approximately:
[tex]\[ 0.67 \, \text{cm}^3 \][/tex]
Among the multiple-choice options provided:
- \[tex]$0.25 \,\text{cm}^3\$[/tex]
- \[tex]$0.67 \,\text{cm}^3\$[/tex]
- \[tex]$1.48 \,\text{cm}^3\$[/tex]
- \[tex]$2.50 \,\text{cm}^3\$[/tex]
The correct answer is:
[tex]\[ 0.67 \, \text{cm}^3 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.