Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the volume of a gold nugget given its mass and density, we will use the density formula and solve for the volume.
The formula for density is:
[tex]\[ D = \frac{m}{v} \][/tex]
where:
[tex]\( D \)[/tex] is the density,
[tex]\( m \)[/tex] is the mass,
[tex]\( v \)[/tex] is the volume.
Given:
- The density of gold [tex]\( D = 19.3 \, \text{g/cm}^3 \)[/tex]
- The mass of the gold nugget [tex]\( m = 13 \, \text{g} \)[/tex]
We need to solve for the volume [tex]\( v \)[/tex]. Rearranging the density formula to solve for volume, we get:
[tex]\[ v = \frac{m}{D} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ v = \frac{13 \, \text{g}}{19.3 \, \text{g/cm}^3} \][/tex]
Performing the division:
[tex]\[ v \approx 0.6735751295336787 \, \text{cm}^3 \][/tex]
Therefore, the volume of the [tex]$13 \, \text{g}$[/tex] gold nugget is approximately:
[tex]\[ 0.67 \, \text{cm}^3 \][/tex]
Among the multiple-choice options provided:
- \[tex]$0.25 \,\text{cm}^3\$[/tex]
- \[tex]$0.67 \,\text{cm}^3\$[/tex]
- \[tex]$1.48 \,\text{cm}^3\$[/tex]
- \[tex]$2.50 \,\text{cm}^3\$[/tex]
The correct answer is:
[tex]\[ 0.67 \, \text{cm}^3 \][/tex]
The formula for density is:
[tex]\[ D = \frac{m}{v} \][/tex]
where:
[tex]\( D \)[/tex] is the density,
[tex]\( m \)[/tex] is the mass,
[tex]\( v \)[/tex] is the volume.
Given:
- The density of gold [tex]\( D = 19.3 \, \text{g/cm}^3 \)[/tex]
- The mass of the gold nugget [tex]\( m = 13 \, \text{g} \)[/tex]
We need to solve for the volume [tex]\( v \)[/tex]. Rearranging the density formula to solve for volume, we get:
[tex]\[ v = \frac{m}{D} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ v = \frac{13 \, \text{g}}{19.3 \, \text{g/cm}^3} \][/tex]
Performing the division:
[tex]\[ v \approx 0.6735751295336787 \, \text{cm}^3 \][/tex]
Therefore, the volume of the [tex]$13 \, \text{g}$[/tex] gold nugget is approximately:
[tex]\[ 0.67 \, \text{cm}^3 \][/tex]
Among the multiple-choice options provided:
- \[tex]$0.25 \,\text{cm}^3\$[/tex]
- \[tex]$0.67 \,\text{cm}^3\$[/tex]
- \[tex]$1.48 \,\text{cm}^3\$[/tex]
- \[tex]$2.50 \,\text{cm}^3\$[/tex]
The correct answer is:
[tex]\[ 0.67 \, \text{cm}^3 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.