Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the range of the exponential function [tex]\( k(x) \)[/tex], let's carefully analyze its behavior, attributes, and characteristics based on the information given.
### Key Points
1. Exponential Growth and Ordered Pair:
- The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\(75\%\)[/tex], implying it is an exponential growth function.
- Given the ordered pair [tex]\((0, 8)\)[/tex], this indicates that when [tex]\( x = 0 \)[/tex], [tex]\( k(0) = 8 \)[/tex].
2. Horizontal Asymptote:
- The function approaches a horizontal asymptote at [tex]\( y = 2 \)[/tex]. This means as [tex]\( x \)[/tex] approaches positive or negative infinity, the function value [tex]\( k(x) \)[/tex] gets closer and closer to [tex]\( 2 \)[/tex], but never actually reaches it.
### Characteristics of the Exponential Function [tex]\( k(x) \)[/tex]:
- For an exponential function of the form [tex]\( k(x) = A \cdot b^x + C \)[/tex], where [tex]\( A \)[/tex], [tex]\( b \)[/tex], and [tex]\( C \)[/tex] are constants:
- [tex]\( A \)[/tex] is a coefficient that determines the vertical stretch or compression and affects the initial value.
- [tex]\( b \)[/tex] is the base of the exponential function.
- [tex]\( C \)[/tex] is the horizontal asymptote, which in this case is [tex]\( y = 2 \)[/tex].
Given that as [tex]\( x \rightarrow \infty \)[/tex] (or [tex]\( x \rightarrow -\infty \)[/tex]), [tex]\( k(x) \)[/tex] approaches 2, we can represent the function in the form:
[tex]\[ k(x) = A \cdot b^x + 2 \][/tex]
Since [tex]\( k(0) = 8 \)[/tex]:
[tex]\[ 8 = A \cdot b^0 + 2 \][/tex]
[tex]\[ 8 = A \cdot 1 + 2 \][/tex]
[tex]\[ A + 2 = 8 \][/tex]
[tex]\[ A = 6 \][/tex]
Thus, our function can be written more specifically as:
[tex]\[ k(x) = 6 \cdot b^x + 2 \][/tex]
Where [tex]\( b \)[/tex] indicates the growth rate, which corresponds to a [tex]\( 75\% \)[/tex] increase.
### The Range of [tex]\( k(x) \)[/tex]:
- The exponential growth function will keep increasing without bound as [tex]\( x \)[/tex] increases, subtracting the horizontal asymptote value [tex]\( 2 \)[/tex], indicating we are adding [tex]\( 6 \cdot b^x \)[/tex] to [tex]\( 2 \)[/tex]:
- As [tex]\( x \to \infty \)[/tex], [tex]\( k(x) \to \infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( k(x) \)[/tex] approaches [tex]\( y = 2 \)[/tex], but never dips below, since the exponential part [tex]\( 6 \cdot b^x \)[/tex] decreases towards [tex]\(0\)[/tex], making the function approach [tex]\(2\)[/tex] from above.
Hence, [tex]\( k(x) \)[/tex] values will never be less than [tex]\(2\)[/tex].
### Conclusion:
Given [tex]\( k(x) \)[/tex] always stays above [tex]\( y = 2 \)[/tex] and increases without bound:
The range of the function [tex]\( k(x) \)[/tex] is [tex]\( (2, \infty) \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{(2, \infty)} \][/tex]
### Key Points
1. Exponential Growth and Ordered Pair:
- The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\(75\%\)[/tex], implying it is an exponential growth function.
- Given the ordered pair [tex]\((0, 8)\)[/tex], this indicates that when [tex]\( x = 0 \)[/tex], [tex]\( k(0) = 8 \)[/tex].
2. Horizontal Asymptote:
- The function approaches a horizontal asymptote at [tex]\( y = 2 \)[/tex]. This means as [tex]\( x \)[/tex] approaches positive or negative infinity, the function value [tex]\( k(x) \)[/tex] gets closer and closer to [tex]\( 2 \)[/tex], but never actually reaches it.
### Characteristics of the Exponential Function [tex]\( k(x) \)[/tex]:
- For an exponential function of the form [tex]\( k(x) = A \cdot b^x + C \)[/tex], where [tex]\( A \)[/tex], [tex]\( b \)[/tex], and [tex]\( C \)[/tex] are constants:
- [tex]\( A \)[/tex] is a coefficient that determines the vertical stretch or compression and affects the initial value.
- [tex]\( b \)[/tex] is the base of the exponential function.
- [tex]\( C \)[/tex] is the horizontal asymptote, which in this case is [tex]\( y = 2 \)[/tex].
Given that as [tex]\( x \rightarrow \infty \)[/tex] (or [tex]\( x \rightarrow -\infty \)[/tex]), [tex]\( k(x) \)[/tex] approaches 2, we can represent the function in the form:
[tex]\[ k(x) = A \cdot b^x + 2 \][/tex]
Since [tex]\( k(0) = 8 \)[/tex]:
[tex]\[ 8 = A \cdot b^0 + 2 \][/tex]
[tex]\[ 8 = A \cdot 1 + 2 \][/tex]
[tex]\[ A + 2 = 8 \][/tex]
[tex]\[ A = 6 \][/tex]
Thus, our function can be written more specifically as:
[tex]\[ k(x) = 6 \cdot b^x + 2 \][/tex]
Where [tex]\( b \)[/tex] indicates the growth rate, which corresponds to a [tex]\( 75\% \)[/tex] increase.
### The Range of [tex]\( k(x) \)[/tex]:
- The exponential growth function will keep increasing without bound as [tex]\( x \)[/tex] increases, subtracting the horizontal asymptote value [tex]\( 2 \)[/tex], indicating we are adding [tex]\( 6 \cdot b^x \)[/tex] to [tex]\( 2 \)[/tex]:
- As [tex]\( x \to \infty \)[/tex], [tex]\( k(x) \to \infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( k(x) \)[/tex] approaches [tex]\( y = 2 \)[/tex], but never dips below, since the exponential part [tex]\( 6 \cdot b^x \)[/tex] decreases towards [tex]\(0\)[/tex], making the function approach [tex]\(2\)[/tex] from above.
Hence, [tex]\( k(x) \)[/tex] values will never be less than [tex]\(2\)[/tex].
### Conclusion:
Given [tex]\( k(x) \)[/tex] always stays above [tex]\( y = 2 \)[/tex] and increases without bound:
The range of the function [tex]\( k(x) \)[/tex] is [tex]\( (2, \infty) \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{(2, \infty)} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.