Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the range of the exponential function [tex]\( k(x) \)[/tex], let's carefully analyze its behavior, attributes, and characteristics based on the information given.
### Key Points
1. Exponential Growth and Ordered Pair:
- The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\(75\%\)[/tex], implying it is an exponential growth function.
- Given the ordered pair [tex]\((0, 8)\)[/tex], this indicates that when [tex]\( x = 0 \)[/tex], [tex]\( k(0) = 8 \)[/tex].
2. Horizontal Asymptote:
- The function approaches a horizontal asymptote at [tex]\( y = 2 \)[/tex]. This means as [tex]\( x \)[/tex] approaches positive or negative infinity, the function value [tex]\( k(x) \)[/tex] gets closer and closer to [tex]\( 2 \)[/tex], but never actually reaches it.
### Characteristics of the Exponential Function [tex]\( k(x) \)[/tex]:
- For an exponential function of the form [tex]\( k(x) = A \cdot b^x + C \)[/tex], where [tex]\( A \)[/tex], [tex]\( b \)[/tex], and [tex]\( C \)[/tex] are constants:
- [tex]\( A \)[/tex] is a coefficient that determines the vertical stretch or compression and affects the initial value.
- [tex]\( b \)[/tex] is the base of the exponential function.
- [tex]\( C \)[/tex] is the horizontal asymptote, which in this case is [tex]\( y = 2 \)[/tex].
Given that as [tex]\( x \rightarrow \infty \)[/tex] (or [tex]\( x \rightarrow -\infty \)[/tex]), [tex]\( k(x) \)[/tex] approaches 2, we can represent the function in the form:
[tex]\[ k(x) = A \cdot b^x + 2 \][/tex]
Since [tex]\( k(0) = 8 \)[/tex]:
[tex]\[ 8 = A \cdot b^0 + 2 \][/tex]
[tex]\[ 8 = A \cdot 1 + 2 \][/tex]
[tex]\[ A + 2 = 8 \][/tex]
[tex]\[ A = 6 \][/tex]
Thus, our function can be written more specifically as:
[tex]\[ k(x) = 6 \cdot b^x + 2 \][/tex]
Where [tex]\( b \)[/tex] indicates the growth rate, which corresponds to a [tex]\( 75\% \)[/tex] increase.
### The Range of [tex]\( k(x) \)[/tex]:
- The exponential growth function will keep increasing without bound as [tex]\( x \)[/tex] increases, subtracting the horizontal asymptote value [tex]\( 2 \)[/tex], indicating we are adding [tex]\( 6 \cdot b^x \)[/tex] to [tex]\( 2 \)[/tex]:
- As [tex]\( x \to \infty \)[/tex], [tex]\( k(x) \to \infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( k(x) \)[/tex] approaches [tex]\( y = 2 \)[/tex], but never dips below, since the exponential part [tex]\( 6 \cdot b^x \)[/tex] decreases towards [tex]\(0\)[/tex], making the function approach [tex]\(2\)[/tex] from above.
Hence, [tex]\( k(x) \)[/tex] values will never be less than [tex]\(2\)[/tex].
### Conclusion:
Given [tex]\( k(x) \)[/tex] always stays above [tex]\( y = 2 \)[/tex] and increases without bound:
The range of the function [tex]\( k(x) \)[/tex] is [tex]\( (2, \infty) \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{(2, \infty)} \][/tex]
### Key Points
1. Exponential Growth and Ordered Pair:
- The function [tex]\( k(x) \)[/tex] increases at a rate of [tex]\(75\%\)[/tex], implying it is an exponential growth function.
- Given the ordered pair [tex]\((0, 8)\)[/tex], this indicates that when [tex]\( x = 0 \)[/tex], [tex]\( k(0) = 8 \)[/tex].
2. Horizontal Asymptote:
- The function approaches a horizontal asymptote at [tex]\( y = 2 \)[/tex]. This means as [tex]\( x \)[/tex] approaches positive or negative infinity, the function value [tex]\( k(x) \)[/tex] gets closer and closer to [tex]\( 2 \)[/tex], but never actually reaches it.
### Characteristics of the Exponential Function [tex]\( k(x) \)[/tex]:
- For an exponential function of the form [tex]\( k(x) = A \cdot b^x + C \)[/tex], where [tex]\( A \)[/tex], [tex]\( b \)[/tex], and [tex]\( C \)[/tex] are constants:
- [tex]\( A \)[/tex] is a coefficient that determines the vertical stretch or compression and affects the initial value.
- [tex]\( b \)[/tex] is the base of the exponential function.
- [tex]\( C \)[/tex] is the horizontal asymptote, which in this case is [tex]\( y = 2 \)[/tex].
Given that as [tex]\( x \rightarrow \infty \)[/tex] (or [tex]\( x \rightarrow -\infty \)[/tex]), [tex]\( k(x) \)[/tex] approaches 2, we can represent the function in the form:
[tex]\[ k(x) = A \cdot b^x + 2 \][/tex]
Since [tex]\( k(0) = 8 \)[/tex]:
[tex]\[ 8 = A \cdot b^0 + 2 \][/tex]
[tex]\[ 8 = A \cdot 1 + 2 \][/tex]
[tex]\[ A + 2 = 8 \][/tex]
[tex]\[ A = 6 \][/tex]
Thus, our function can be written more specifically as:
[tex]\[ k(x) = 6 \cdot b^x + 2 \][/tex]
Where [tex]\( b \)[/tex] indicates the growth rate, which corresponds to a [tex]\( 75\% \)[/tex] increase.
### The Range of [tex]\( k(x) \)[/tex]:
- The exponential growth function will keep increasing without bound as [tex]\( x \)[/tex] increases, subtracting the horizontal asymptote value [tex]\( 2 \)[/tex], indicating we are adding [tex]\( 6 \cdot b^x \)[/tex] to [tex]\( 2 \)[/tex]:
- As [tex]\( x \to \infty \)[/tex], [tex]\( k(x) \to \infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( k(x) \)[/tex] approaches [tex]\( y = 2 \)[/tex], but never dips below, since the exponential part [tex]\( 6 \cdot b^x \)[/tex] decreases towards [tex]\(0\)[/tex], making the function approach [tex]\(2\)[/tex] from above.
Hence, [tex]\( k(x) \)[/tex] values will never be less than [tex]\(2\)[/tex].
### Conclusion:
Given [tex]\( k(x) \)[/tex] always stays above [tex]\( y = 2 \)[/tex] and increases without bound:
The range of the function [tex]\( k(x) \)[/tex] is [tex]\( (2, \infty) \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{(2, \infty)} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.