Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve this problem step-by-step.
### Step 1: Identify the GCF of 36 and 45
First, find the Greatest Common Factor (GCF) of the numbers 36 and 45. The GCF of 36 and 45 is 9.
### Step 2: Express each number as a product of the GCF and another number
Next, we need to express each given number as a product of its GCF (which we found to be 9) and another factor.
So,
For 36:
[tex]\[ 36 = 9 \times 4 \][/tex]
For 45:
[tex]\[ 45 = 9 \times 5 \][/tex]
### Step 3: Rewrite the original sum using the Distributive Property
Now, we are going to rewrite the sum [tex]\( 36 + 45 \)[/tex] using the Distributive Property.
[tex]\[ 36 + 45 \][/tex]
We substitute the products we found:
[tex]\[ (9 \times 4) + (9 \times 5) \][/tex]
Next, factor out the common factor (which is 9):
[tex]\[ 9 \times (4 + 5) \][/tex]
### Step 4: Simplify the expression inside the parentheses
Finally, simplify the expression inside the parentheses:
[tex]\[ 4 + 5 = 9 \][/tex]
So, the rewritten sum is:
[tex]\[ 36 + 45 = 9 \times 9 \][/tex]
### Final Answer
Rewriting the sum of 36 and 45 as a product using the distributive property gives:
[tex]\[ 36 + 45 = 9 \times (4 + 5) = 9 \times 9 = 81 \][/tex]
So, filling in the boxes:
[tex]\[ 9 \times (4 + 5) \][/tex]
In conclusion:
[tex]\[ \boxed{36 + 45 = 9 \times (4 + 5)} \][/tex]
This uses the distributive property to rewrite the sum as asked.
### Step 1: Identify the GCF of 36 and 45
First, find the Greatest Common Factor (GCF) of the numbers 36 and 45. The GCF of 36 and 45 is 9.
### Step 2: Express each number as a product of the GCF and another number
Next, we need to express each given number as a product of its GCF (which we found to be 9) and another factor.
So,
For 36:
[tex]\[ 36 = 9 \times 4 \][/tex]
For 45:
[tex]\[ 45 = 9 \times 5 \][/tex]
### Step 3: Rewrite the original sum using the Distributive Property
Now, we are going to rewrite the sum [tex]\( 36 + 45 \)[/tex] using the Distributive Property.
[tex]\[ 36 + 45 \][/tex]
We substitute the products we found:
[tex]\[ (9 \times 4) + (9 \times 5) \][/tex]
Next, factor out the common factor (which is 9):
[tex]\[ 9 \times (4 + 5) \][/tex]
### Step 4: Simplify the expression inside the parentheses
Finally, simplify the expression inside the parentheses:
[tex]\[ 4 + 5 = 9 \][/tex]
So, the rewritten sum is:
[tex]\[ 36 + 45 = 9 \times 9 \][/tex]
### Final Answer
Rewriting the sum of 36 and 45 as a product using the distributive property gives:
[tex]\[ 36 + 45 = 9 \times (4 + 5) = 9 \times 9 = 81 \][/tex]
So, filling in the boxes:
[tex]\[ 9 \times (4 + 5) \][/tex]
In conclusion:
[tex]\[ \boxed{36 + 45 = 9 \times (4 + 5)} \][/tex]
This uses the distributive property to rewrite the sum as asked.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.