Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's break down the solution step-by-step:
### Step 1 - Finding the GCF:
Firstly, we need to find the greatest common factor (GCF) of the numbers 36 and 45.
The GCF of 36 and 45 is 9.
### Step 2 - Express Each Number as a Product of the GCF and Another Number:
Now, we'll express each number as a product of the GCF and another number.
- For 36:
We divide 36 by the GCF (9), resulting in:
[tex]\[ 36 = 9 \times 4 \][/tex]
- For 45:
We divide 45 by the GCF (9), resulting in:
[tex]\[ 45 = 9 \times 5 \][/tex]
### Step 3 - Represent the Sum Using the Distributive Property:
We now need to rewrite the sum [tex]\( 36 + 45 \)[/tex] using the distributive property. Let's substitute the factored forms of 36 and 45:
[tex]\[ 36 + 45 = (9 \times 4) + (9 \times 5) \][/tex]
### Step 4 - Apply the Distributive Property:
Using the distributive property, we can factor out the GCF (9) from the expression:
[tex]\[ (9 \times 4) + (9 \times 5) = 9 \times (4 + 5) \][/tex]
So, [tex]\( 36 + 45 \)[/tex] can be rewritten as:
[tex]\[ 9 \times (4 + 5) \][/tex]
### Step 5 - Simplify the Expression:
Finally, we simplify the expression inside the parentheses:
[tex]\[ 4 + 5 = 9 \][/tex]
So, the sum expressed as a product is:
[tex]\[ 9 \times 9 = \boxed{81} \][/tex]
### Summary:
We have used the GCF of 36 and 45, which is 9, to rewrite the sum [tex]\( 36 + 45 \)[/tex] using the distributive property as [tex]\( 9 \times (4 + 5) \)[/tex], which simplifies to [tex]\( 9 \times 9 \)[/tex] equaling [tex]\( 81 \)[/tex].
### Step 1 - Finding the GCF:
Firstly, we need to find the greatest common factor (GCF) of the numbers 36 and 45.
The GCF of 36 and 45 is 9.
### Step 2 - Express Each Number as a Product of the GCF and Another Number:
Now, we'll express each number as a product of the GCF and another number.
- For 36:
We divide 36 by the GCF (9), resulting in:
[tex]\[ 36 = 9 \times 4 \][/tex]
- For 45:
We divide 45 by the GCF (9), resulting in:
[tex]\[ 45 = 9 \times 5 \][/tex]
### Step 3 - Represent the Sum Using the Distributive Property:
We now need to rewrite the sum [tex]\( 36 + 45 \)[/tex] using the distributive property. Let's substitute the factored forms of 36 and 45:
[tex]\[ 36 + 45 = (9 \times 4) + (9 \times 5) \][/tex]
### Step 4 - Apply the Distributive Property:
Using the distributive property, we can factor out the GCF (9) from the expression:
[tex]\[ (9 \times 4) + (9 \times 5) = 9 \times (4 + 5) \][/tex]
So, [tex]\( 36 + 45 \)[/tex] can be rewritten as:
[tex]\[ 9 \times (4 + 5) \][/tex]
### Step 5 - Simplify the Expression:
Finally, we simplify the expression inside the parentheses:
[tex]\[ 4 + 5 = 9 \][/tex]
So, the sum expressed as a product is:
[tex]\[ 9 \times 9 = \boxed{81} \][/tex]
### Summary:
We have used the GCF of 36 and 45, which is 9, to rewrite the sum [tex]\( 36 + 45 \)[/tex] using the distributive property as [tex]\( 9 \times (4 + 5) \)[/tex], which simplifies to [tex]\( 9 \times 9 \)[/tex] equaling [tex]\( 81 \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.