Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve for the measure of the associated central angle for the arc Rob and his brother traveled on the Ferris wheel, we follow these steps:
1. Diameter of the Ferris wheel:
The diameter of the Ferris wheel is given as 40 feet.
2. Distance traveled:
They traveled a distance of [tex]\(\frac{86}{3} \pi\)[/tex] feet.
3. Calculate the radius:
The radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{40}{2} = 20 \text{ feet} \][/tex]
4. Find the circumference of the Ferris wheel:
The circumference [tex]\( C \)[/tex] is given by:
[tex]\[ C = 2 \pi r = 2 \pi \times 20 = 40 \pi \text{ feet} \][/tex]
5. Find the fraction of the circumference that they traveled:
The fraction of the circumference that equals the distance traveled is:
[tex]\[ \text{Fraction} = \frac{\text{Distance traveled}}{\text{Circumference}} = \frac{\frac{86}{3} \pi}{40 \pi} = \frac{86}{3 \times 40} = \frac{86}{120} = \frac{43}{60} \][/tex]
6. Calculate the central angle in radians:
Since one complete revolution equals [tex]\( 2\pi \)[/tex] radians, the central angle in radians is:
[tex]\[ \text{Central angle (radians)} = \text{Fraction} \times 2\pi = \frac{43}{60} \times 2\pi = \frac{86}{60} \pi = \frac{43}{30} \pi \approx 4.50294947014537 \text{ radians} \][/tex]
7. Convert the central angle to degrees:
To convert from radians to degrees, use the conversion factor [tex]\( 1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \)[/tex]:
[tex]\[ \text{Central angle (degrees)} = 4.50294947014537 \text{ radians} \times \frac{180}{\pi} \approx 258.0 \text{ degrees} \][/tex]
So, the measure of the associated central angle for the arc they traveled is [tex]\( 258 \)[/tex] degrees.
Therefore, the central angle measures [tex]\( \boxed{258} \)[/tex].
1. Diameter of the Ferris wheel:
The diameter of the Ferris wheel is given as 40 feet.
2. Distance traveled:
They traveled a distance of [tex]\(\frac{86}{3} \pi\)[/tex] feet.
3. Calculate the radius:
The radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{40}{2} = 20 \text{ feet} \][/tex]
4. Find the circumference of the Ferris wheel:
The circumference [tex]\( C \)[/tex] is given by:
[tex]\[ C = 2 \pi r = 2 \pi \times 20 = 40 \pi \text{ feet} \][/tex]
5. Find the fraction of the circumference that they traveled:
The fraction of the circumference that equals the distance traveled is:
[tex]\[ \text{Fraction} = \frac{\text{Distance traveled}}{\text{Circumference}} = \frac{\frac{86}{3} \pi}{40 \pi} = \frac{86}{3 \times 40} = \frac{86}{120} = \frac{43}{60} \][/tex]
6. Calculate the central angle in radians:
Since one complete revolution equals [tex]\( 2\pi \)[/tex] radians, the central angle in radians is:
[tex]\[ \text{Central angle (radians)} = \text{Fraction} \times 2\pi = \frac{43}{60} \times 2\pi = \frac{86}{60} \pi = \frac{43}{30} \pi \approx 4.50294947014537 \text{ radians} \][/tex]
7. Convert the central angle to degrees:
To convert from radians to degrees, use the conversion factor [tex]\( 1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \)[/tex]:
[tex]\[ \text{Central angle (degrees)} = 4.50294947014537 \text{ radians} \times \frac{180}{\pi} \approx 258.0 \text{ degrees} \][/tex]
So, the measure of the associated central angle for the arc they traveled is [tex]\( 258 \)[/tex] degrees.
Therefore, the central angle measures [tex]\( \boxed{258} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.