Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve for the measure of the associated central angle for the arc Rob and his brother traveled on the Ferris wheel, we follow these steps:
1. Diameter of the Ferris wheel:
The diameter of the Ferris wheel is given as 40 feet.
2. Distance traveled:
They traveled a distance of [tex]\(\frac{86}{3} \pi\)[/tex] feet.
3. Calculate the radius:
The radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{40}{2} = 20 \text{ feet} \][/tex]
4. Find the circumference of the Ferris wheel:
The circumference [tex]\( C \)[/tex] is given by:
[tex]\[ C = 2 \pi r = 2 \pi \times 20 = 40 \pi \text{ feet} \][/tex]
5. Find the fraction of the circumference that they traveled:
The fraction of the circumference that equals the distance traveled is:
[tex]\[ \text{Fraction} = \frac{\text{Distance traveled}}{\text{Circumference}} = \frac{\frac{86}{3} \pi}{40 \pi} = \frac{86}{3 \times 40} = \frac{86}{120} = \frac{43}{60} \][/tex]
6. Calculate the central angle in radians:
Since one complete revolution equals [tex]\( 2\pi \)[/tex] radians, the central angle in radians is:
[tex]\[ \text{Central angle (radians)} = \text{Fraction} \times 2\pi = \frac{43}{60} \times 2\pi = \frac{86}{60} \pi = \frac{43}{30} \pi \approx 4.50294947014537 \text{ radians} \][/tex]
7. Convert the central angle to degrees:
To convert from radians to degrees, use the conversion factor [tex]\( 1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \)[/tex]:
[tex]\[ \text{Central angle (degrees)} = 4.50294947014537 \text{ radians} \times \frac{180}{\pi} \approx 258.0 \text{ degrees} \][/tex]
So, the measure of the associated central angle for the arc they traveled is [tex]\( 258 \)[/tex] degrees.
Therefore, the central angle measures [tex]\( \boxed{258} \)[/tex].
1. Diameter of the Ferris wheel:
The diameter of the Ferris wheel is given as 40 feet.
2. Distance traveled:
They traveled a distance of [tex]\(\frac{86}{3} \pi\)[/tex] feet.
3. Calculate the radius:
The radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{40}{2} = 20 \text{ feet} \][/tex]
4. Find the circumference of the Ferris wheel:
The circumference [tex]\( C \)[/tex] is given by:
[tex]\[ C = 2 \pi r = 2 \pi \times 20 = 40 \pi \text{ feet} \][/tex]
5. Find the fraction of the circumference that they traveled:
The fraction of the circumference that equals the distance traveled is:
[tex]\[ \text{Fraction} = \frac{\text{Distance traveled}}{\text{Circumference}} = \frac{\frac{86}{3} \pi}{40 \pi} = \frac{86}{3 \times 40} = \frac{86}{120} = \frac{43}{60} \][/tex]
6. Calculate the central angle in radians:
Since one complete revolution equals [tex]\( 2\pi \)[/tex] radians, the central angle in radians is:
[tex]\[ \text{Central angle (radians)} = \text{Fraction} \times 2\pi = \frac{43}{60} \times 2\pi = \frac{86}{60} \pi = \frac{43}{30} \pi \approx 4.50294947014537 \text{ radians} \][/tex]
7. Convert the central angle to degrees:
To convert from radians to degrees, use the conversion factor [tex]\( 1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \)[/tex]:
[tex]\[ \text{Central angle (degrees)} = 4.50294947014537 \text{ radians} \times \frac{180}{\pi} \approx 258.0 \text{ degrees} \][/tex]
So, the measure of the associated central angle for the arc they traveled is [tex]\( 258 \)[/tex] degrees.
Therefore, the central angle measures [tex]\( \boxed{258} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.