Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for the measure of the associated central angle for the arc Rob and his brother traveled on the Ferris wheel, we follow these steps:
1. Diameter of the Ferris wheel:
The diameter of the Ferris wheel is given as 40 feet.
2. Distance traveled:
They traveled a distance of [tex]\(\frac{86}{3} \pi\)[/tex] feet.
3. Calculate the radius:
The radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{40}{2} = 20 \text{ feet} \][/tex]
4. Find the circumference of the Ferris wheel:
The circumference [tex]\( C \)[/tex] is given by:
[tex]\[ C = 2 \pi r = 2 \pi \times 20 = 40 \pi \text{ feet} \][/tex]
5. Find the fraction of the circumference that they traveled:
The fraction of the circumference that equals the distance traveled is:
[tex]\[ \text{Fraction} = \frac{\text{Distance traveled}}{\text{Circumference}} = \frac{\frac{86}{3} \pi}{40 \pi} = \frac{86}{3 \times 40} = \frac{86}{120} = \frac{43}{60} \][/tex]
6. Calculate the central angle in radians:
Since one complete revolution equals [tex]\( 2\pi \)[/tex] radians, the central angle in radians is:
[tex]\[ \text{Central angle (radians)} = \text{Fraction} \times 2\pi = \frac{43}{60} \times 2\pi = \frac{86}{60} \pi = \frac{43}{30} \pi \approx 4.50294947014537 \text{ radians} \][/tex]
7. Convert the central angle to degrees:
To convert from radians to degrees, use the conversion factor [tex]\( 1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \)[/tex]:
[tex]\[ \text{Central angle (degrees)} = 4.50294947014537 \text{ radians} \times \frac{180}{\pi} \approx 258.0 \text{ degrees} \][/tex]
So, the measure of the associated central angle for the arc they traveled is [tex]\( 258 \)[/tex] degrees.
Therefore, the central angle measures [tex]\( \boxed{258} \)[/tex].
1. Diameter of the Ferris wheel:
The diameter of the Ferris wheel is given as 40 feet.
2. Distance traveled:
They traveled a distance of [tex]\(\frac{86}{3} \pi\)[/tex] feet.
3. Calculate the radius:
The radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{40}{2} = 20 \text{ feet} \][/tex]
4. Find the circumference of the Ferris wheel:
The circumference [tex]\( C \)[/tex] is given by:
[tex]\[ C = 2 \pi r = 2 \pi \times 20 = 40 \pi \text{ feet} \][/tex]
5. Find the fraction of the circumference that they traveled:
The fraction of the circumference that equals the distance traveled is:
[tex]\[ \text{Fraction} = \frac{\text{Distance traveled}}{\text{Circumference}} = \frac{\frac{86}{3} \pi}{40 \pi} = \frac{86}{3 \times 40} = \frac{86}{120} = \frac{43}{60} \][/tex]
6. Calculate the central angle in radians:
Since one complete revolution equals [tex]\( 2\pi \)[/tex] radians, the central angle in radians is:
[tex]\[ \text{Central angle (radians)} = \text{Fraction} \times 2\pi = \frac{43}{60} \times 2\pi = \frac{86}{60} \pi = \frac{43}{30} \pi \approx 4.50294947014537 \text{ radians} \][/tex]
7. Convert the central angle to degrees:
To convert from radians to degrees, use the conversion factor [tex]\( 1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \)[/tex]:
[tex]\[ \text{Central angle (degrees)} = 4.50294947014537 \text{ radians} \times \frac{180}{\pi} \approx 258.0 \text{ degrees} \][/tex]
So, the measure of the associated central angle for the arc they traveled is [tex]\( 258 \)[/tex] degrees.
Therefore, the central angle measures [tex]\( \boxed{258} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.