Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\( \sqrt{5x + 21} = x + 5 \)[/tex], let's follow these steps:
1. Isolate the Square Root:
The square root is already isolated on the left side:
[tex]\[ \sqrt{5x + 21} = x + 5 \][/tex]
2. Square Both Sides:
To remove the square root, square both sides of the equation:
[tex]\[ \left(\sqrt{5x + 21}\right)^2 = (x + 5)^2 \][/tex]
This simplifies to:
[tex]\[ 5x + 21 = x^2 + 10x + 25 \][/tex]
3. Rearrange to Form a Quadratic Equation:
Move all terms to one side to set the equation to zero:
[tex]\[ 5x + 21 - 5x = x^2 + 10x + 25 - 5x - 21 \][/tex]
Simplifying this, we get:
[tex]\[ 0 = x^2 + 5x + 4 \][/tex]
4. Solve the Quadratic Equation:
Factor the quadratic equation:
[tex]\[ 0 = x^2 + 5x + 4 \implies (x + 4)(x + 1) = 0 \][/tex]
Set each factor to zero:
[tex]\[ x + 4 = 0 \quad \Rightarrow \quad x = -4 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
5. Verify Each Potential Solution:
It's important to verify that each solution satisfies the original equation, as squaring both sides can introduce extraneous solutions.
- For [tex]\( x = -4 \)[/tex]:
[tex]\[ \sqrt{5(-4) + 21} = -4 + 5 \][/tex]
Simplifies to:
[tex]\[ \sqrt{-20 + 21} = 1 \quad \Rightarrow \quad \sqrt{1} = 1 \][/tex]
Which is true.
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ \sqrt{5(-1) + 21} = -1 + 5 \][/tex]
Simplifies to:
[tex]\[ \sqrt{-5 + 21} = 4 \quad \Rightarrow \quad \sqrt{16} = 4 \][/tex]
Which is true.
Thus, the solutions to the equation [tex]\( \sqrt{5x + 21} = x + 5 \)[/tex] are:
[tex]\[ \boxed{-4 \text{ and } -1} \][/tex]
1. Isolate the Square Root:
The square root is already isolated on the left side:
[tex]\[ \sqrt{5x + 21} = x + 5 \][/tex]
2. Square Both Sides:
To remove the square root, square both sides of the equation:
[tex]\[ \left(\sqrt{5x + 21}\right)^2 = (x + 5)^2 \][/tex]
This simplifies to:
[tex]\[ 5x + 21 = x^2 + 10x + 25 \][/tex]
3. Rearrange to Form a Quadratic Equation:
Move all terms to one side to set the equation to zero:
[tex]\[ 5x + 21 - 5x = x^2 + 10x + 25 - 5x - 21 \][/tex]
Simplifying this, we get:
[tex]\[ 0 = x^2 + 5x + 4 \][/tex]
4. Solve the Quadratic Equation:
Factor the quadratic equation:
[tex]\[ 0 = x^2 + 5x + 4 \implies (x + 4)(x + 1) = 0 \][/tex]
Set each factor to zero:
[tex]\[ x + 4 = 0 \quad \Rightarrow \quad x = -4 \][/tex]
[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
5. Verify Each Potential Solution:
It's important to verify that each solution satisfies the original equation, as squaring both sides can introduce extraneous solutions.
- For [tex]\( x = -4 \)[/tex]:
[tex]\[ \sqrt{5(-4) + 21} = -4 + 5 \][/tex]
Simplifies to:
[tex]\[ \sqrt{-20 + 21} = 1 \quad \Rightarrow \quad \sqrt{1} = 1 \][/tex]
Which is true.
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ \sqrt{5(-1) + 21} = -1 + 5 \][/tex]
Simplifies to:
[tex]\[ \sqrt{-5 + 21} = 4 \quad \Rightarrow \quad \sqrt{16} = 4 \][/tex]
Which is true.
Thus, the solutions to the equation [tex]\( \sqrt{5x + 21} = x + 5 \)[/tex] are:
[tex]\[ \boxed{-4 \text{ and } -1} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.