Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's break down each given option to determine which function has vertical asymptotes that correspond to the specified domain, specifically [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], where [tex]\( n \)[/tex] is an integer.
1. [tex]\( f(x) = \tan(2x - \pi) \)[/tex]
- The tangent function [tex]\( \tan(\theta) \)[/tex] has vertical asymptotes where [tex]\( \theta = \frac{(2k+1)\pi}{2} \)[/tex] for integers [tex]\( k \)[/tex].
- For [tex]\( f(x) \)[/tex]:
[tex]\[ 2x - \pi = \frac{(2k+1) \pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 2x = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
[tex]\[ x = \frac{(2k+3)\pi}{4} \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
2. [tex]\( g(x) = \tan(x - \pi) \)[/tex]
- For [tex]\( g(x) \)[/tex]:
[tex]\[ x - \pi = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
3. [tex]\( h(x) = \tan \left( x - \frac{\pi}{2} \right) \)[/tex]
- For [tex]\( h(x) \)[/tex]:
[tex]\[ x - \frac{\pi}{2} = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(2k+1)\pi}{2} + \frac{\pi}{2} = \frac{(2k+2)\pi}{2} = (k+1) \pi \][/tex]
Setting [tex]\( k = 2m \)[/tex] or [tex]\( k = 2m+1 \)[/tex], it becomes clear this matches [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], given the periodicity properties of tangent and matches the given domain restrictions.
4. [tex]\( j(x) = \tan \left( \frac{x}{2} - \pi \right) \)[/tex]
- For [tex]\( j(x) \)[/tex]:
[tex]\[ \frac{x}{2} - \pi = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{x}{2} = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
[tex]\[ x = (2k+3)\pi \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
Thus, the correct choice that represents a tangent function with a domain such that [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], where [tex]\( n \)[/tex] is an integer, is:
[tex]\[ h(x) = \tan \left( x - \frac{\pi}{2} \right) \][/tex]
So, the answer is [tex]\( \boxed{3} \)[/tex].
1. [tex]\( f(x) = \tan(2x - \pi) \)[/tex]
- The tangent function [tex]\( \tan(\theta) \)[/tex] has vertical asymptotes where [tex]\( \theta = \frac{(2k+1)\pi}{2} \)[/tex] for integers [tex]\( k \)[/tex].
- For [tex]\( f(x) \)[/tex]:
[tex]\[ 2x - \pi = \frac{(2k+1) \pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 2x = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
[tex]\[ x = \frac{(2k+3)\pi}{4} \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
2. [tex]\( g(x) = \tan(x - \pi) \)[/tex]
- For [tex]\( g(x) \)[/tex]:
[tex]\[ x - \pi = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
3. [tex]\( h(x) = \tan \left( x - \frac{\pi}{2} \right) \)[/tex]
- For [tex]\( h(x) \)[/tex]:
[tex]\[ x - \frac{\pi}{2} = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(2k+1)\pi}{2} + \frac{\pi}{2} = \frac{(2k+2)\pi}{2} = (k+1) \pi \][/tex]
Setting [tex]\( k = 2m \)[/tex] or [tex]\( k = 2m+1 \)[/tex], it becomes clear this matches [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], given the periodicity properties of tangent and matches the given domain restrictions.
4. [tex]\( j(x) = \tan \left( \frac{x}{2} - \pi \right) \)[/tex]
- For [tex]\( j(x) \)[/tex]:
[tex]\[ \frac{x}{2} - \pi = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{x}{2} = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
[tex]\[ x = (2k+3)\pi \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
Thus, the correct choice that represents a tangent function with a domain such that [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], where [tex]\( n \)[/tex] is an integer, is:
[tex]\[ h(x) = \tan \left( x - \frac{\pi}{2} \right) \][/tex]
So, the answer is [tex]\( \boxed{3} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.