Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's break down each given option to determine which function has vertical asymptotes that correspond to the specified domain, specifically [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], where [tex]\( n \)[/tex] is an integer.
1. [tex]\( f(x) = \tan(2x - \pi) \)[/tex]
- The tangent function [tex]\( \tan(\theta) \)[/tex] has vertical asymptotes where [tex]\( \theta = \frac{(2k+1)\pi}{2} \)[/tex] for integers [tex]\( k \)[/tex].
- For [tex]\( f(x) \)[/tex]:
[tex]\[ 2x - \pi = \frac{(2k+1) \pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 2x = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
[tex]\[ x = \frac{(2k+3)\pi}{4} \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
2. [tex]\( g(x) = \tan(x - \pi) \)[/tex]
- For [tex]\( g(x) \)[/tex]:
[tex]\[ x - \pi = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
3. [tex]\( h(x) = \tan \left( x - \frac{\pi}{2} \right) \)[/tex]
- For [tex]\( h(x) \)[/tex]:
[tex]\[ x - \frac{\pi}{2} = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(2k+1)\pi}{2} + \frac{\pi}{2} = \frac{(2k+2)\pi}{2} = (k+1) \pi \][/tex]
Setting [tex]\( k = 2m \)[/tex] or [tex]\( k = 2m+1 \)[/tex], it becomes clear this matches [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], given the periodicity properties of tangent and matches the given domain restrictions.
4. [tex]\( j(x) = \tan \left( \frac{x}{2} - \pi \right) \)[/tex]
- For [tex]\( j(x) \)[/tex]:
[tex]\[ \frac{x}{2} - \pi = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{x}{2} = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
[tex]\[ x = (2k+3)\pi \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
Thus, the correct choice that represents a tangent function with a domain such that [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], where [tex]\( n \)[/tex] is an integer, is:
[tex]\[ h(x) = \tan \left( x - \frac{\pi}{2} \right) \][/tex]
So, the answer is [tex]\( \boxed{3} \)[/tex].
1. [tex]\( f(x) = \tan(2x - \pi) \)[/tex]
- The tangent function [tex]\( \tan(\theta) \)[/tex] has vertical asymptotes where [tex]\( \theta = \frac{(2k+1)\pi}{2} \)[/tex] for integers [tex]\( k \)[/tex].
- For [tex]\( f(x) \)[/tex]:
[tex]\[ 2x - \pi = \frac{(2k+1) \pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 2x = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
[tex]\[ x = \frac{(2k+3)\pi}{4} \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
2. [tex]\( g(x) = \tan(x - \pi) \)[/tex]
- For [tex]\( g(x) \)[/tex]:
[tex]\[ x - \pi = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
3. [tex]\( h(x) = \tan \left( x - \frac{\pi}{2} \right) \)[/tex]
- For [tex]\( h(x) \)[/tex]:
[tex]\[ x - \frac{\pi}{2} = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(2k+1)\pi}{2} + \frac{\pi}{2} = \frac{(2k+2)\pi}{2} = (k+1) \pi \][/tex]
Setting [tex]\( k = 2m \)[/tex] or [tex]\( k = 2m+1 \)[/tex], it becomes clear this matches [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], given the periodicity properties of tangent and matches the given domain restrictions.
4. [tex]\( j(x) = \tan \left( \frac{x}{2} - \pi \right) \)[/tex]
- For [tex]\( j(x) \)[/tex]:
[tex]\[ \frac{x}{2} - \pi = \frac{(2k+1)\pi}{2} \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{x}{2} = \frac{(2k+1)\pi}{2} + \pi = \frac{(2k+1)\pi + 2\pi}{2} = \frac{(2k+3)\pi}{2} \][/tex]
[tex]\[ x = (2k+3)\pi \][/tex]
This does not match the given domain [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex].
Thus, the correct choice that represents a tangent function with a domain such that [tex]\( x \neq \frac{\pi}{4} + \frac{\pi}{2} n \)[/tex], where [tex]\( n \)[/tex] is an integer, is:
[tex]\[ h(x) = \tan \left( x - \frac{\pi}{2} \right) \][/tex]
So, the answer is [tex]\( \boxed{3} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.