Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Given the marks obtained by pupils in a test:
[tex]\[ \begin{array}{lllll} 8 & 4 & 8 & 2 & 8 \\ 6 & 8 & 8 & 8 & 10 \\ 8 & 9 & 8 & 6 & 10 \\ 2 & 2 & 8 & 6 & 6 \end{array} \][/tex]
Let's address each part of the problem step by step.
### a) Construct a frequency distribution table for the data.
To construct the frequency distribution table, we need to count the occurrences of each mark:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Mark} & \text{Tally} & \text{Frequency} \\ \hline 2 & ||| & 3 \\ \hline 4 & | & 1 \\ \hline 6 & |||| & 4 \\ \hline 8 & ||||||||| & 9 \\ \hline 9 & | & 1 \\ \hline 10 & || & 2 \\ \hline \end{array} \][/tex]
### b) What is the modal mark?
The modal mark is the mark that appears most frequently in the data set. From the frequency distribution table, we see that the mark 8 appears 9 times, which is more frequent than any other mark.
Thus, the modal mark is [tex]\(8\)[/tex].
### c) Calculate the mean mark.
The mean mark can be calculated using the formula:
[tex]\[ \text{Mean} = \frac{\sum (\text{Mark} \times \text{Frequency})}{\sum (\text{Frequency})} \][/tex]
From the frequency distribution, the total of the marks times their respective frequencies is:
[tex]\[ 2 \times 3 + 4 \times 1 + 6 \times 4 + 8 \times 9 + 9 \times 1 + 10 \times 2 = 6 + 4 + 24 + 72 + 9 + 20 = 135 \][/tex]
The total number of students (sum of frequencies) is:
[tex]\[ 3 + 1 + 4 + 9 + 1 + 2 = 20 \][/tex]
Therefore, the mean mark is:
[tex]\[ \text{Mean} = \frac{135}{20} = 6.75 \][/tex]
### d) How many pupils score more than 7 marks?
We need to count the number of pupils who scored more than 7 marks. From the frequency table:
- 8 marks: 9 pupils
- 9 marks: 1 pupil
- 10 marks: 2 pupils
Thus, the total number of pupils who scored more than 7 marks is:
[tex]\[ 9 + 1 + 2 = 12 \][/tex]
### e) What is the probability that a student chosen at random obtained 2 marks?
The probability can be calculated as the ratio of the number of students who obtained 2 marks to the total number of students.
From the frequency table, the number of students who obtained 2 marks is 3, and the total number of students is 20.
Therefore, the probability that a student chosen at random obtained 2 marks is:
[tex]\[ \frac{3}{20} = 0.15 \][/tex]
### Summary Table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Mark} & \text{Tally} & \text{Frequency} & f \times x \\ \hline 2 & ||| & 3 & 6 \\ \hline 4 & | & 1 & 4 \\ \hline 6 & |||| & 4 & 24 \\ \hline 8 & ||||||||| & 9 & 72 \\ \hline 9 & | & 1 & 9 \\ \hline 10 & || & 2 & 20 \\ \hline \text{Total} & & 20 & 135 \\ \hline \end{array} \][/tex]
[tex]\[ \begin{array}{lllll} 8 & 4 & 8 & 2 & 8 \\ 6 & 8 & 8 & 8 & 10 \\ 8 & 9 & 8 & 6 & 10 \\ 2 & 2 & 8 & 6 & 6 \end{array} \][/tex]
Let's address each part of the problem step by step.
### a) Construct a frequency distribution table for the data.
To construct the frequency distribution table, we need to count the occurrences of each mark:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Mark} & \text{Tally} & \text{Frequency} \\ \hline 2 & ||| & 3 \\ \hline 4 & | & 1 \\ \hline 6 & |||| & 4 \\ \hline 8 & ||||||||| & 9 \\ \hline 9 & | & 1 \\ \hline 10 & || & 2 \\ \hline \end{array} \][/tex]
### b) What is the modal mark?
The modal mark is the mark that appears most frequently in the data set. From the frequency distribution table, we see that the mark 8 appears 9 times, which is more frequent than any other mark.
Thus, the modal mark is [tex]\(8\)[/tex].
### c) Calculate the mean mark.
The mean mark can be calculated using the formula:
[tex]\[ \text{Mean} = \frac{\sum (\text{Mark} \times \text{Frequency})}{\sum (\text{Frequency})} \][/tex]
From the frequency distribution, the total of the marks times their respective frequencies is:
[tex]\[ 2 \times 3 + 4 \times 1 + 6 \times 4 + 8 \times 9 + 9 \times 1 + 10 \times 2 = 6 + 4 + 24 + 72 + 9 + 20 = 135 \][/tex]
The total number of students (sum of frequencies) is:
[tex]\[ 3 + 1 + 4 + 9 + 1 + 2 = 20 \][/tex]
Therefore, the mean mark is:
[tex]\[ \text{Mean} = \frac{135}{20} = 6.75 \][/tex]
### d) How many pupils score more than 7 marks?
We need to count the number of pupils who scored more than 7 marks. From the frequency table:
- 8 marks: 9 pupils
- 9 marks: 1 pupil
- 10 marks: 2 pupils
Thus, the total number of pupils who scored more than 7 marks is:
[tex]\[ 9 + 1 + 2 = 12 \][/tex]
### e) What is the probability that a student chosen at random obtained 2 marks?
The probability can be calculated as the ratio of the number of students who obtained 2 marks to the total number of students.
From the frequency table, the number of students who obtained 2 marks is 3, and the total number of students is 20.
Therefore, the probability that a student chosen at random obtained 2 marks is:
[tex]\[ \frac{3}{20} = 0.15 \][/tex]
### Summary Table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline \text{Mark} & \text{Tally} & \text{Frequency} & f \times x \\ \hline 2 & ||| & 3 & 6 \\ \hline 4 & | & 1 & 4 \\ \hline 6 & |||| & 4 & 24 \\ \hline 8 & ||||||||| & 9 & 72 \\ \hline 9 & | & 1 & 9 \\ \hline 10 & || & 2 & 20 \\ \hline \text{Total} & & 20 & 135 \\ \hline \end{array} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.