Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To evaluate the cube root of [tex]\(-27\)[/tex], we need to determine what number, when raised to the power of 3, equals [tex]\(-27\)[/tex]. Here, we are looking for the complex cube root because [tex]\( \sqrt[3]{-27} \)[/tex] can lead to complex solutions.
1. Understanding the problem:
- We are given [tex]\( \sqrt[3]{-27} \)[/tex].
- We need to find a number [tex]\( x \)[/tex] such that [tex]\( x^3 = -27 \)[/tex].
2. Formulating in polar form:
- The complex number [tex]\(-27\)[/tex] can be represented in polar form. [tex]\(-27\)[/tex] on the complex plane is in quadrant II, which can be represented as [tex]\( 27 \text{cis}(\pi) \)[/tex], where [tex]\(\text{cis}(\theta) = \cos(\theta) + i\sin(\theta)\)[/tex].
3. Finding the principal root:
- For complex numbers, the cube root is obtained by taking the cube root of the magnitude and dividing the angle by 3.
- The magnitude (absolute value) of [tex]\(-27\)[/tex] is 27.
- The argument (angle) is [tex]\(\pi\)[/tex].
- The principal cube root of 27 is [tex]\( 27^{1/3} = 3 \)[/tex].
- The cube root of the angle is [tex]\( \frac{\pi}{3} = \frac{\pi}{3} \)[/tex].
4. Including the principal cube root (r, θ/3):
- Converting back to the rectangular form (x + yi), we have:
[tex]\[ 3 \text{cis}\left(\frac{\pi}{3}\right) = 3 \left( \cos\left( \frac{\pi}{3} \right) + i \sin\left( \frac{\pi}{3} \right) \right) \][/tex]
5. Calculating the trigonometric functions:
- [tex]\( \cos\left( \frac{\pi}{3} \right) = \frac{1}{2} \)[/tex]
- [tex]\( \sin\left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \)[/tex]
- Plugging these values in:
[tex]\[ 3 \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = \frac{3}{2} + i \frac{3\sqrt{3}}{2} \][/tex]
6. Checking the complex cube roots:
- For the given value [tex]\(-27\)[/tex], there are actually three cube roots, but we only need the principal one.
- Using these steps, one of the cube roots is:
[tex]\[ x = \frac{3}{2} + i \frac{3\sqrt{3}}{2} \][/tex]
- Rewriting this as a single term:
[tex]\[ x = 1.5000000000000004 + 2.598076211353316i \][/tex]
Therefore, the cube root of [tex]\( -27 \)[/tex] is [tex]\( \left(1.5000000000000004+2.598076211353316i\right) \)[/tex].
1. Understanding the problem:
- We are given [tex]\( \sqrt[3]{-27} \)[/tex].
- We need to find a number [tex]\( x \)[/tex] such that [tex]\( x^3 = -27 \)[/tex].
2. Formulating in polar form:
- The complex number [tex]\(-27\)[/tex] can be represented in polar form. [tex]\(-27\)[/tex] on the complex plane is in quadrant II, which can be represented as [tex]\( 27 \text{cis}(\pi) \)[/tex], where [tex]\(\text{cis}(\theta) = \cos(\theta) + i\sin(\theta)\)[/tex].
3. Finding the principal root:
- For complex numbers, the cube root is obtained by taking the cube root of the magnitude and dividing the angle by 3.
- The magnitude (absolute value) of [tex]\(-27\)[/tex] is 27.
- The argument (angle) is [tex]\(\pi\)[/tex].
- The principal cube root of 27 is [tex]\( 27^{1/3} = 3 \)[/tex].
- The cube root of the angle is [tex]\( \frac{\pi}{3} = \frac{\pi}{3} \)[/tex].
4. Including the principal cube root (r, θ/3):
- Converting back to the rectangular form (x + yi), we have:
[tex]\[ 3 \text{cis}\left(\frac{\pi}{3}\right) = 3 \left( \cos\left( \frac{\pi}{3} \right) + i \sin\left( \frac{\pi}{3} \right) \right) \][/tex]
5. Calculating the trigonometric functions:
- [tex]\( \cos\left( \frac{\pi}{3} \right) = \frac{1}{2} \)[/tex]
- [tex]\( \sin\left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \)[/tex]
- Plugging these values in:
[tex]\[ 3 \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = \frac{3}{2} + i \frac{3\sqrt{3}}{2} \][/tex]
6. Checking the complex cube roots:
- For the given value [tex]\(-27\)[/tex], there are actually three cube roots, but we only need the principal one.
- Using these steps, one of the cube roots is:
[tex]\[ x = \frac{3}{2} + i \frac{3\sqrt{3}}{2} \][/tex]
- Rewriting this as a single term:
[tex]\[ x = 1.5000000000000004 + 2.598076211353316i \][/tex]
Therefore, the cube root of [tex]\( -27 \)[/tex] is [tex]\( \left(1.5000000000000004+2.598076211353316i\right) \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.