Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine how much gas Jan added to her tank, we start with the initial and final amounts of gas in the tank.
1. Initial amount of gas: [tex]\(\frac{1}{12}\)[/tex] of the tank
2. Final amount of gas: [tex]\(\frac{2}{3}\)[/tex] of the tank
We need to find the difference between the final amount and the initial amount to determine how much gas Jan added. This difference can be calculated as follows:
[tex]\[ \text{Gas added} = \text{Final amount} - \text{Initial amount} \][/tex]
Let’s plug in the given values:
[tex]\[ \text{Gas added} = \frac{2}{3} - \frac{1}{12} \][/tex]
To perform this subtraction, we need to have a common denominator. The least common denominator (LCD) of 3 and 12 is 12. We will convert [tex]\(\frac{2}{3}\)[/tex] to a fraction with a denominator of 12:
[tex]\[ \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \][/tex]
Now we can directly subtract [tex]\(\frac{1}{12}\)[/tex] from [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{8}{12} - \frac{1}{12} = \frac{8 - 1}{12} = \frac{7}{12} \][/tex]
Therefore, the amount of gas Jan added to her tank is:
[tex]\[ \frac{7}{12} \][/tex]
So, the correct answer is [tex]\(\frac{7}{12}\)[/tex].
1. Initial amount of gas: [tex]\(\frac{1}{12}\)[/tex] of the tank
2. Final amount of gas: [tex]\(\frac{2}{3}\)[/tex] of the tank
We need to find the difference between the final amount and the initial amount to determine how much gas Jan added. This difference can be calculated as follows:
[tex]\[ \text{Gas added} = \text{Final amount} - \text{Initial amount} \][/tex]
Let’s plug in the given values:
[tex]\[ \text{Gas added} = \frac{2}{3} - \frac{1}{12} \][/tex]
To perform this subtraction, we need to have a common denominator. The least common denominator (LCD) of 3 and 12 is 12. We will convert [tex]\(\frac{2}{3}\)[/tex] to a fraction with a denominator of 12:
[tex]\[ \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \][/tex]
Now we can directly subtract [tex]\(\frac{1}{12}\)[/tex] from [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{8}{12} - \frac{1}{12} = \frac{8 - 1}{12} = \frac{7}{12} \][/tex]
Therefore, the amount of gas Jan added to her tank is:
[tex]\[ \frac{7}{12} \][/tex]
So, the correct answer is [tex]\(\frac{7}{12}\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.