At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine how much gas Jan added to her tank, we start with the initial and final amounts of gas in the tank.
1. Initial amount of gas: [tex]\(\frac{1}{12}\)[/tex] of the tank
2. Final amount of gas: [tex]\(\frac{2}{3}\)[/tex] of the tank
We need to find the difference between the final amount and the initial amount to determine how much gas Jan added. This difference can be calculated as follows:
[tex]\[ \text{Gas added} = \text{Final amount} - \text{Initial amount} \][/tex]
Let’s plug in the given values:
[tex]\[ \text{Gas added} = \frac{2}{3} - \frac{1}{12} \][/tex]
To perform this subtraction, we need to have a common denominator. The least common denominator (LCD) of 3 and 12 is 12. We will convert [tex]\(\frac{2}{3}\)[/tex] to a fraction with a denominator of 12:
[tex]\[ \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \][/tex]
Now we can directly subtract [tex]\(\frac{1}{12}\)[/tex] from [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{8}{12} - \frac{1}{12} = \frac{8 - 1}{12} = \frac{7}{12} \][/tex]
Therefore, the amount of gas Jan added to her tank is:
[tex]\[ \frac{7}{12} \][/tex]
So, the correct answer is [tex]\(\frac{7}{12}\)[/tex].
1. Initial amount of gas: [tex]\(\frac{1}{12}\)[/tex] of the tank
2. Final amount of gas: [tex]\(\frac{2}{3}\)[/tex] of the tank
We need to find the difference between the final amount and the initial amount to determine how much gas Jan added. This difference can be calculated as follows:
[tex]\[ \text{Gas added} = \text{Final amount} - \text{Initial amount} \][/tex]
Let’s plug in the given values:
[tex]\[ \text{Gas added} = \frac{2}{3} - \frac{1}{12} \][/tex]
To perform this subtraction, we need to have a common denominator. The least common denominator (LCD) of 3 and 12 is 12. We will convert [tex]\(\frac{2}{3}\)[/tex] to a fraction with a denominator of 12:
[tex]\[ \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \][/tex]
Now we can directly subtract [tex]\(\frac{1}{12}\)[/tex] from [tex]\(\frac{8}{12}\)[/tex]:
[tex]\[ \frac{8}{12} - \frac{1}{12} = \frac{8 - 1}{12} = \frac{7}{12} \][/tex]
Therefore, the amount of gas Jan added to her tank is:
[tex]\[ \frac{7}{12} \][/tex]
So, the correct answer is [tex]\(\frac{7}{12}\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.