Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the limit [tex]\(\lim_{x \to \infty} \frac{\frac{1}{x} - 10x}{2x + \frac{1}{3x}}\)[/tex], let's go through the steps in detail.
Given:
[tex]\[ f(x) = \frac{\frac{1}{x} - 10x}{2x + \frac{1}{3x}} \][/tex]
1. Simplify the expression:
First, we need to break down the given fraction. Let's look at the numerator and the denominator separately:
[tex]\[ \text{Numerator}: \frac{1}{x} - 10x \][/tex]
[tex]\[ \text{Denominator}: 2x + \frac{1}{3x} \][/tex]
2. Factor out the dominant terms:
When [tex]\(x\)[/tex] approaches infinity, the dominant term in the numerator [tex]\(\frac{1}{x} - 10x\)[/tex] is [tex]\(-10x\)[/tex] because [tex]\( \frac{1}{x} \)[/tex] approaches 0.
Similarly, the dominant term in the denominator [tex]\(2x + \frac{1}{3x}\)[/tex] is [tex]\(2x\)[/tex] because [tex]\(\frac{1}{3x}\)[/tex] approaches 0.
3. Divide the numerator and the denominator by [tex]\(x\)[/tex]:
Let's rewrite the function by dividing both the numerator and denominator by [tex]\(x\)[/tex]:
[tex]\[ \frac{\frac{\frac{1}{x} - 10x}{x}}{\frac{2x + \frac{1}{3x}}{x}} = \frac{\frac{1}{x^2} - 10}{2 + \frac{1}{3x^2}} \][/tex]
4. Simplify the terms:
As [tex]\(x \to \infty\)[/tex], [tex]\(\frac{1}{x^2} \to 0\)[/tex] and [tex]\(\frac{1}{3x^2} \to 0\)[/tex]. Therefore, the expression simplifies to:
[tex]\[ \frac{0 - 10}{2 + 0} = \frac{-10}{2} = -5 \][/tex]
Thus, the limit as [tex]\( x \)[/tex] approaches infinity of the given function is:
[tex]\[ \lim_{x \to \infty} \frac{\frac{1}{x} - 10x}{2x + \frac{1}{3x}} = -5 \][/tex]
Therefore, the answer is [tex]\(-5\)[/tex].
Given:
[tex]\[ f(x) = \frac{\frac{1}{x} - 10x}{2x + \frac{1}{3x}} \][/tex]
1. Simplify the expression:
First, we need to break down the given fraction. Let's look at the numerator and the denominator separately:
[tex]\[ \text{Numerator}: \frac{1}{x} - 10x \][/tex]
[tex]\[ \text{Denominator}: 2x + \frac{1}{3x} \][/tex]
2. Factor out the dominant terms:
When [tex]\(x\)[/tex] approaches infinity, the dominant term in the numerator [tex]\(\frac{1}{x} - 10x\)[/tex] is [tex]\(-10x\)[/tex] because [tex]\( \frac{1}{x} \)[/tex] approaches 0.
Similarly, the dominant term in the denominator [tex]\(2x + \frac{1}{3x}\)[/tex] is [tex]\(2x\)[/tex] because [tex]\(\frac{1}{3x}\)[/tex] approaches 0.
3. Divide the numerator and the denominator by [tex]\(x\)[/tex]:
Let's rewrite the function by dividing both the numerator and denominator by [tex]\(x\)[/tex]:
[tex]\[ \frac{\frac{\frac{1}{x} - 10x}{x}}{\frac{2x + \frac{1}{3x}}{x}} = \frac{\frac{1}{x^2} - 10}{2 + \frac{1}{3x^2}} \][/tex]
4. Simplify the terms:
As [tex]\(x \to \infty\)[/tex], [tex]\(\frac{1}{x^2} \to 0\)[/tex] and [tex]\(\frac{1}{3x^2} \to 0\)[/tex]. Therefore, the expression simplifies to:
[tex]\[ \frac{0 - 10}{2 + 0} = \frac{-10}{2} = -5 \][/tex]
Thus, the limit as [tex]\( x \)[/tex] approaches infinity of the given function is:
[tex]\[ \lim_{x \to \infty} \frac{\frac{1}{x} - 10x}{2x + \frac{1}{3x}} = -5 \][/tex]
Therefore, the answer is [tex]\(-5\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.