At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's solve the expression [tex]\(\sqrt[3]{125 x^3 y}\)[/tex] step by step:
1. Identify the components inside the cube root: The expression inside the cube root is [tex]\(125 x^3 y\)[/tex].
2. Break down the expression:
- The number [tex]\(125\)[/tex] is a constant.
- The variable [tex]\(x\)[/tex] is raised to the power of 3, which is [tex]\(x^3\)[/tex].
- The variable [tex]\(y\)[/tex] remains as [tex]\(y\)[/tex].
3. Take the cube root of each component separately:
- The cube root of [tex]\(125\)[/tex] is [tex]\(5\)[/tex] because [tex]\(5^3 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex] because [tex]\((x^3)^{1/3} = x\)[/tex].
- The cube root of [tex]\(y\)[/tex] is [tex]\(y^{1/3}\)[/tex].
4. Combine the results:
- Combining the cube root of [tex]\(125\)[/tex], [tex]\(x^3\)[/tex], and [tex]\(y\)[/tex], we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 \cdot x \cdot y^{1/3} \][/tex]
5. Express the result in a simplified form:
- We can write [tex]\(x y^{1/3}\)[/tex] as [tex]\((x^3 y)^{1/3}\)[/tex] because we are distributing the cube root over the product.
- Hence, we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 (x^3 y)^{1/3} \][/tex]
So, the simplified answer is:
[tex]\[ 5 (x^3 y)^{1/3} \][/tex]
This is the simplified form of the given cube root expression.
1. Identify the components inside the cube root: The expression inside the cube root is [tex]\(125 x^3 y\)[/tex].
2. Break down the expression:
- The number [tex]\(125\)[/tex] is a constant.
- The variable [tex]\(x\)[/tex] is raised to the power of 3, which is [tex]\(x^3\)[/tex].
- The variable [tex]\(y\)[/tex] remains as [tex]\(y\)[/tex].
3. Take the cube root of each component separately:
- The cube root of [tex]\(125\)[/tex] is [tex]\(5\)[/tex] because [tex]\(5^3 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex] because [tex]\((x^3)^{1/3} = x\)[/tex].
- The cube root of [tex]\(y\)[/tex] is [tex]\(y^{1/3}\)[/tex].
4. Combine the results:
- Combining the cube root of [tex]\(125\)[/tex], [tex]\(x^3\)[/tex], and [tex]\(y\)[/tex], we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 \cdot x \cdot y^{1/3} \][/tex]
5. Express the result in a simplified form:
- We can write [tex]\(x y^{1/3}\)[/tex] as [tex]\((x^3 y)^{1/3}\)[/tex] because we are distributing the cube root over the product.
- Hence, we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 (x^3 y)^{1/3} \][/tex]
So, the simplified answer is:
[tex]\[ 5 (x^3 y)^{1/3} \][/tex]
This is the simplified form of the given cube root expression.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.