At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's solve the expression [tex]\(\sqrt[3]{125 x^3 y}\)[/tex] step by step:
1. Identify the components inside the cube root: The expression inside the cube root is [tex]\(125 x^3 y\)[/tex].
2. Break down the expression:
- The number [tex]\(125\)[/tex] is a constant.
- The variable [tex]\(x\)[/tex] is raised to the power of 3, which is [tex]\(x^3\)[/tex].
- The variable [tex]\(y\)[/tex] remains as [tex]\(y\)[/tex].
3. Take the cube root of each component separately:
- The cube root of [tex]\(125\)[/tex] is [tex]\(5\)[/tex] because [tex]\(5^3 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex] because [tex]\((x^3)^{1/3} = x\)[/tex].
- The cube root of [tex]\(y\)[/tex] is [tex]\(y^{1/3}\)[/tex].
4. Combine the results:
- Combining the cube root of [tex]\(125\)[/tex], [tex]\(x^3\)[/tex], and [tex]\(y\)[/tex], we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 \cdot x \cdot y^{1/3} \][/tex]
5. Express the result in a simplified form:
- We can write [tex]\(x y^{1/3}\)[/tex] as [tex]\((x^3 y)^{1/3}\)[/tex] because we are distributing the cube root over the product.
- Hence, we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 (x^3 y)^{1/3} \][/tex]
So, the simplified answer is:
[tex]\[ 5 (x^3 y)^{1/3} \][/tex]
This is the simplified form of the given cube root expression.
1. Identify the components inside the cube root: The expression inside the cube root is [tex]\(125 x^3 y\)[/tex].
2. Break down the expression:
- The number [tex]\(125\)[/tex] is a constant.
- The variable [tex]\(x\)[/tex] is raised to the power of 3, which is [tex]\(x^3\)[/tex].
- The variable [tex]\(y\)[/tex] remains as [tex]\(y\)[/tex].
3. Take the cube root of each component separately:
- The cube root of [tex]\(125\)[/tex] is [tex]\(5\)[/tex] because [tex]\(5^3 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex] because [tex]\((x^3)^{1/3} = x\)[/tex].
- The cube root of [tex]\(y\)[/tex] is [tex]\(y^{1/3}\)[/tex].
4. Combine the results:
- Combining the cube root of [tex]\(125\)[/tex], [tex]\(x^3\)[/tex], and [tex]\(y\)[/tex], we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 \cdot x \cdot y^{1/3} \][/tex]
5. Express the result in a simplified form:
- We can write [tex]\(x y^{1/3}\)[/tex] as [tex]\((x^3 y)^{1/3}\)[/tex] because we are distributing the cube root over the product.
- Hence, we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 (x^3 y)^{1/3} \][/tex]
So, the simplified answer is:
[tex]\[ 5 (x^3 y)^{1/3} \][/tex]
This is the simplified form of the given cube root expression.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.