Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Simplify: [tex]\sqrt[3]{125x^3y}[/tex]

Sagot :

Sure, let's solve the expression [tex]\(\sqrt[3]{125 x^3 y}\)[/tex] step by step:

1. Identify the components inside the cube root: The expression inside the cube root is [tex]\(125 x^3 y\)[/tex].

2. Break down the expression:
- The number [tex]\(125\)[/tex] is a constant.
- The variable [tex]\(x\)[/tex] is raised to the power of 3, which is [tex]\(x^3\)[/tex].
- The variable [tex]\(y\)[/tex] remains as [tex]\(y\)[/tex].

3. Take the cube root of each component separately:
- The cube root of [tex]\(125\)[/tex] is [tex]\(5\)[/tex] because [tex]\(5^3 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex] because [tex]\((x^3)^{1/3} = x\)[/tex].
- The cube root of [tex]\(y\)[/tex] is [tex]\(y^{1/3}\)[/tex].

4. Combine the results:
- Combining the cube root of [tex]\(125\)[/tex], [tex]\(x^3\)[/tex], and [tex]\(y\)[/tex], we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 \cdot x \cdot y^{1/3} \][/tex]

5. Express the result in a simplified form:
- We can write [tex]\(x y^{1/3}\)[/tex] as [tex]\((x^3 y)^{1/3}\)[/tex] because we are distributing the cube root over the product.
- Hence, we get:
[tex]\[ \sqrt[3]{125 x^3 y} = 5 (x^3 y)^{1/3} \][/tex]

So, the simplified answer is:
[tex]\[ 5 (x^3 y)^{1/3} \][/tex]

This is the simplified form of the given cube root expression.