Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the compound inequality [tex]\(-2x + 9 \leq 13\)[/tex] or [tex]\(-3x - 1 > 8\)[/tex], let's break it down into two separate inequalities and solve each step-by-step.
### Solving the first inequality: [tex]\(-2x + 9 \leq 13\)[/tex]
1. Start with the original inequality:
[tex]\[ -2x + 9 \leq 13 \][/tex]
2. Subtract 9 from both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ -2x + 9 - 9 \leq 13 - 9 \][/tex]
Simplifying, we get:
[tex]\[ -2x \leq 4 \][/tex]
3. Divide both sides by [tex]\(-2\)[/tex]. Remember, when you divide by a negative number, you must reverse the inequality sign:
[tex]\[ x \geq \frac{4}{-2} \][/tex]
Simplifying, we get:
[tex]\[ x \geq -2 \][/tex]
### Solving the second inequality: [tex]\(-3x - 1 > 8\)[/tex]
1. Start with the original inequality:
[tex]\[ -3x - 1 > 8 \][/tex]
2. Add 1 to both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ -3x - 1 + 1 > 8 + 1 \][/tex]
Simplifying, we get:
[tex]\[ -3x > 9 \][/tex]
3. Divide both sides by [tex]\(-3\)[/tex]. Again, remember to reverse the inequality sign when dividing by a negative number:
[tex]\[ x < \frac{9}{-3} \][/tex]
Simplifying, we get:
[tex]\[ x < -3 \][/tex]
### Combining the solutions
The compound inequality [tex]\( -2x + 9 \leq 13 \)[/tex] or [tex]\( -3x - 1 > 8 \)[/tex] combines our findings from the individual inequalities. The solution to the compound inequality is:
[tex]\[ x \geq -2 \quad \text{or} \quad x < -3 \][/tex]
Therefore, the set of all values of [tex]\(x\)[/tex] which satisfy either inequality is:
[tex]\[ x \geq -2 \quad \text{or} \quad x < -3 \][/tex]
### Solving the first inequality: [tex]\(-2x + 9 \leq 13\)[/tex]
1. Start with the original inequality:
[tex]\[ -2x + 9 \leq 13 \][/tex]
2. Subtract 9 from both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ -2x + 9 - 9 \leq 13 - 9 \][/tex]
Simplifying, we get:
[tex]\[ -2x \leq 4 \][/tex]
3. Divide both sides by [tex]\(-2\)[/tex]. Remember, when you divide by a negative number, you must reverse the inequality sign:
[tex]\[ x \geq \frac{4}{-2} \][/tex]
Simplifying, we get:
[tex]\[ x \geq -2 \][/tex]
### Solving the second inequality: [tex]\(-3x - 1 > 8\)[/tex]
1. Start with the original inequality:
[tex]\[ -3x - 1 > 8 \][/tex]
2. Add 1 to both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ -3x - 1 + 1 > 8 + 1 \][/tex]
Simplifying, we get:
[tex]\[ -3x > 9 \][/tex]
3. Divide both sides by [tex]\(-3\)[/tex]. Again, remember to reverse the inequality sign when dividing by a negative number:
[tex]\[ x < \frac{9}{-3} \][/tex]
Simplifying, we get:
[tex]\[ x < -3 \][/tex]
### Combining the solutions
The compound inequality [tex]\( -2x + 9 \leq 13 \)[/tex] or [tex]\( -3x - 1 > 8 \)[/tex] combines our findings from the individual inequalities. The solution to the compound inequality is:
[tex]\[ x \geq -2 \quad \text{or} \quad x < -3 \][/tex]
Therefore, the set of all values of [tex]\(x\)[/tex] which satisfy either inequality is:
[tex]\[ x \geq -2 \quad \text{or} \quad x < -3 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.