Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the inequalities [tex]\(3x < x + 4\)[/tex] and [tex]\(\frac{1}{2}(4x - 6) > x - 2\)[/tex], we will proceed step by step for each inequality and then find the intersection of the solutions.
### Step 1: Solve [tex]\(3x < x + 4\)[/tex]
1. Subtract [tex]\(x\)[/tex] from both sides to simplify:
[tex]\[ 3x - x < x + 4 - x \][/tex]
[tex]\[ 2x < 4 \][/tex]
2. Divide both sides by 2:
[tex]\[ \frac{2x}{2} < \frac{4}{2} \][/tex]
[tex]\[ x < 2 \][/tex]
The solution to the inequality [tex]\(3x < x + 4\)[/tex] is [tex]\(x < 2\)[/tex].
### Step 2: Solve [tex]\(\frac{1}{2}(4x - 6) > x - 2\)[/tex]
1. Distribute [tex]\(\frac{1}{2}\)[/tex] inside the parentheses:
[tex]\[ \frac{1}{2} \cdot 4x - \frac{1}{2} \cdot 6 > x - 2 \][/tex]
[tex]\[ 2x - 3 > x - 2 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides to simplify:
[tex]\[ 2x - x - 3 > x - x - 2 \][/tex]
[tex]\[ x - 3 > -2 \][/tex]
3. Add 3 to both sides:
[tex]\[ x - 3 + 3 > -2 + 3 \][/tex]
[tex]\[ x > 1 \][/tex]
The solution to the inequality [tex]\(\frac{1}{2}(4x - 6) > x - 2\)[/tex] is [tex]\(x > 1\)[/tex].
### Step 3: Intersection of the solutions
We need to find the values of [tex]\(x\)[/tex] that satisfy both [tex]\(x < 2\)[/tex] and [tex]\(x > 1\)[/tex].
The intersection of the two inequalities is:
[tex]\[ 1 < x < 2 \][/tex]
### Final Answer
The solution to the inequalities [tex]\(3x < x + 4\)[/tex] and [tex]\(\frac{1}{2}(4x - 6) > x - 2\)[/tex] is [tex]\(1 < x < 2\)[/tex].
### Number Line Representation
On a number line, this solution is represented as:
[tex]\[ (1, 2) \][/tex]
```
1 2
------(===)-----
```
The open parentheses and segment indicate that [tex]\(x\)[/tex] is greater than 1 and less than 2, but not including the endpoints 1 and 2 themselves.
### Step 1: Solve [tex]\(3x < x + 4\)[/tex]
1. Subtract [tex]\(x\)[/tex] from both sides to simplify:
[tex]\[ 3x - x < x + 4 - x \][/tex]
[tex]\[ 2x < 4 \][/tex]
2. Divide both sides by 2:
[tex]\[ \frac{2x}{2} < \frac{4}{2} \][/tex]
[tex]\[ x < 2 \][/tex]
The solution to the inequality [tex]\(3x < x + 4\)[/tex] is [tex]\(x < 2\)[/tex].
### Step 2: Solve [tex]\(\frac{1}{2}(4x - 6) > x - 2\)[/tex]
1. Distribute [tex]\(\frac{1}{2}\)[/tex] inside the parentheses:
[tex]\[ \frac{1}{2} \cdot 4x - \frac{1}{2} \cdot 6 > x - 2 \][/tex]
[tex]\[ 2x - 3 > x - 2 \][/tex]
2. Subtract [tex]\(x\)[/tex] from both sides to simplify:
[tex]\[ 2x - x - 3 > x - x - 2 \][/tex]
[tex]\[ x - 3 > -2 \][/tex]
3. Add 3 to both sides:
[tex]\[ x - 3 + 3 > -2 + 3 \][/tex]
[tex]\[ x > 1 \][/tex]
The solution to the inequality [tex]\(\frac{1}{2}(4x - 6) > x - 2\)[/tex] is [tex]\(x > 1\)[/tex].
### Step 3: Intersection of the solutions
We need to find the values of [tex]\(x\)[/tex] that satisfy both [tex]\(x < 2\)[/tex] and [tex]\(x > 1\)[/tex].
The intersection of the two inequalities is:
[tex]\[ 1 < x < 2 \][/tex]
### Final Answer
The solution to the inequalities [tex]\(3x < x + 4\)[/tex] and [tex]\(\frac{1}{2}(4x - 6) > x - 2\)[/tex] is [tex]\(1 < x < 2\)[/tex].
### Number Line Representation
On a number line, this solution is represented as:
[tex]\[ (1, 2) \][/tex]
```
1 2
------(===)-----
```
The open parentheses and segment indicate that [tex]\(x\)[/tex] is greater than 1 and less than 2, but not including the endpoints 1 and 2 themselves.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.