Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the inequality [tex]\(-2|2x + 3| > 4\)[/tex], let's start by analyzing it step-by-step:
1. We have the inequality:
[tex]\[ -2|2x + 3| > 4 \][/tex]
2. Divide both sides by [tex]\(-2\)[/tex] and remember to flip the inequality sign since we are dividing by a negative number:
[tex]\[ |2x + 3| < -2 \][/tex]
3. Here, we are comparing the absolute value expression [tex]\(|2x + 3|\)[/tex] with [tex]\(-2\)[/tex]. However, the absolute value of any expression is always non-negative, meaning it is either zero or positive. Therefore, [tex]\(|2x + 3|\)[/tex] can never be less than a negative number:
[tex]\[ |2x + 3| \geq 0 \quad \text{for all real numbers } x \][/tex]
4. Since no real number [tex]\(x\)[/tex] can satisfy the inequality [tex]\(|2x + 3| < -2\)[/tex], it means there are no solutions to the given inequality.
So, the correct answer is:
[tex]\[ \text{No solution} \][/tex]
1. We have the inequality:
[tex]\[ -2|2x + 3| > 4 \][/tex]
2. Divide both sides by [tex]\(-2\)[/tex] and remember to flip the inequality sign since we are dividing by a negative number:
[tex]\[ |2x + 3| < -2 \][/tex]
3. Here, we are comparing the absolute value expression [tex]\(|2x + 3|\)[/tex] with [tex]\(-2\)[/tex]. However, the absolute value of any expression is always non-negative, meaning it is either zero or positive. Therefore, [tex]\(|2x + 3|\)[/tex] can never be less than a negative number:
[tex]\[ |2x + 3| \geq 0 \quad \text{for all real numbers } x \][/tex]
4. Since no real number [tex]\(x\)[/tex] can satisfy the inequality [tex]\(|2x + 3| < -2\)[/tex], it means there are no solutions to the given inequality.
So, the correct answer is:
[tex]\[ \text{No solution} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.