Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the inequality [tex]\(-2|2x + 3| > 4\)[/tex], let's start by analyzing it step-by-step:
1. We have the inequality:
[tex]\[ -2|2x + 3| > 4 \][/tex]
2. Divide both sides by [tex]\(-2\)[/tex] and remember to flip the inequality sign since we are dividing by a negative number:
[tex]\[ |2x + 3| < -2 \][/tex]
3. Here, we are comparing the absolute value expression [tex]\(|2x + 3|\)[/tex] with [tex]\(-2\)[/tex]. However, the absolute value of any expression is always non-negative, meaning it is either zero or positive. Therefore, [tex]\(|2x + 3|\)[/tex] can never be less than a negative number:
[tex]\[ |2x + 3| \geq 0 \quad \text{for all real numbers } x \][/tex]
4. Since no real number [tex]\(x\)[/tex] can satisfy the inequality [tex]\(|2x + 3| < -2\)[/tex], it means there are no solutions to the given inequality.
So, the correct answer is:
[tex]\[ \text{No solution} \][/tex]
1. We have the inequality:
[tex]\[ -2|2x + 3| > 4 \][/tex]
2. Divide both sides by [tex]\(-2\)[/tex] and remember to flip the inequality sign since we are dividing by a negative number:
[tex]\[ |2x + 3| < -2 \][/tex]
3. Here, we are comparing the absolute value expression [tex]\(|2x + 3|\)[/tex] with [tex]\(-2\)[/tex]. However, the absolute value of any expression is always non-negative, meaning it is either zero or positive. Therefore, [tex]\(|2x + 3|\)[/tex] can never be less than a negative number:
[tex]\[ |2x + 3| \geq 0 \quad \text{for all real numbers } x \][/tex]
4. Since no real number [tex]\(x\)[/tex] can satisfy the inequality [tex]\(|2x + 3| < -2\)[/tex], it means there are no solutions to the given inequality.
So, the correct answer is:
[tex]\[ \text{No solution} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.