Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether this is a fair game, we need to evaluate the probabilities of each player winning and then compare these probabilities.
First, let's list all possible outcomes when tossing two coins:
1. Heads, Heads (HH)
2. Heads, Tails (HT)
3. Tails, Heads (TH)
4. Tails, Tails (TT)
Each of these outcomes has an equal probability of occurring because there are two coins and each coin has an equal chance of landing on Heads or Tails. Therefore, the probability of each outcome is:
[tex]\[ \text{Probability of each outcome} = \frac{1}{4} \][/tex]
Next, let's determine the probability that you win. You win if and only if both coins land on Heads (HH):
- Probability of Heads, Heads (HH) = [tex]\(\frac{1}{4}\)[/tex]
Thus, your probability of winning is:
[tex]\[ \text{Your probability of winning} = \frac{1}{4} \][/tex]
Let's now determine the probability that your friend wins. Your friend wins if and only if both coins land on Tails (TT):
- Probability of Tails, Tails (TT) = [tex]\(\frac{1}{4}\)[/tex]
Thus, your friend's probability of winning is:
[tex]\[ \text{Friend's probability of winning} = \frac{1}{4} \][/tex]
Since both you and your friend have an equal probability of winning (both [tex]\(\frac{1}{4}\)[/tex]), the game is fair.
Therefore, the correct answer is:
A. Yes. You and your friend each have a [tex]\(\frac{1}{4}\)[/tex] probability of winning.
First, let's list all possible outcomes when tossing two coins:
1. Heads, Heads (HH)
2. Heads, Tails (HT)
3. Tails, Heads (TH)
4. Tails, Tails (TT)
Each of these outcomes has an equal probability of occurring because there are two coins and each coin has an equal chance of landing on Heads or Tails. Therefore, the probability of each outcome is:
[tex]\[ \text{Probability of each outcome} = \frac{1}{4} \][/tex]
Next, let's determine the probability that you win. You win if and only if both coins land on Heads (HH):
- Probability of Heads, Heads (HH) = [tex]\(\frac{1}{4}\)[/tex]
Thus, your probability of winning is:
[tex]\[ \text{Your probability of winning} = \frac{1}{4} \][/tex]
Let's now determine the probability that your friend wins. Your friend wins if and only if both coins land on Tails (TT):
- Probability of Tails, Tails (TT) = [tex]\(\frac{1}{4}\)[/tex]
Thus, your friend's probability of winning is:
[tex]\[ \text{Friend's probability of winning} = \frac{1}{4} \][/tex]
Since both you and your friend have an equal probability of winning (both [tex]\(\frac{1}{4}\)[/tex]), the game is fair.
Therefore, the correct answer is:
A. Yes. You and your friend each have a [tex]\(\frac{1}{4}\)[/tex] probability of winning.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.