Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve the equation step-by-step:
Given the equation:
[tex]\[ 7 \sec^2 \theta + \tan^2 \theta = 15 \][/tex]
First, recall that the secant function and the tangent function have a trigonometric identity relationship. Specifically, for any angle [tex]\(\theta\)[/tex]:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
We will use this identity to simplify our given equation. Substitute [tex]\(\sec^2 \theta\)[/tex] with [tex]\(1 + \tan^2 \theta\)[/tex]:
[tex]\[ 7 (1 + \tan^2 \theta) + \tan^2 \theta = 15 \][/tex]
Expand and combine like terms:
[tex]\[ 7 + 7 \tan^2 \theta + \tan^2 \theta = 15 \][/tex]
[tex]\[ 7 + 8 \tan^2 \theta = 15 \][/tex]
Isolate the term involving [tex]\(\tan^2 \theta\)[/tex]:
[tex]\[ 8 \tan^2 \theta = 15 - 7 \][/tex]
[tex]\[ 8 \tan^2 \theta = 8 \][/tex]
Now divide both sides by 8:
[tex]\[ \tan^2 \theta = 1 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \tan \theta = \pm 1 \][/tex]
We now need to determine the angles [tex]\(\theta\)[/tex] where the tangent is [tex]\(\pm 1\)[/tex]. Recall the values of [tex]\(\theta\)[/tex] in one full circle (from [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex] radians) where this occurs:
1. [tex]\(\tan \theta = 1\)[/tex] at [tex]\(\theta = \frac{\pi}{4} \)[/tex] and [tex]\(\theta = \frac{5\pi}{4}\)[/tex].
2. [tex]\(\tan \theta = -1\)[/tex] at [tex]\(\theta = \frac{3\pi}{4}\)[/tex] and [tex]\(\theta = \frac{7\pi}{4}\)[/tex].
However, [tex]\(\tan \theta\)[/tex] repeats every [tex]\(\pi\)[/tex] radians. Therefore, we can simply use the general solutions for these values within the range of [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex]. Thus, the angles are:
[tex]\[ \theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4} \][/tex]
To also consider angles in other quadrants, let's include the negative rotations:
[tex]\[ \theta = -\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
Therefore, the complete set of solutions is:
[tex]\[ \theta = -\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
These are the angles [tex]\(\theta\)[/tex] where the given equation [tex]\(7 \sec^2 \theta + \tan^2 \theta = 15\)[/tex] holds true.
Given the equation:
[tex]\[ 7 \sec^2 \theta + \tan^2 \theta = 15 \][/tex]
First, recall that the secant function and the tangent function have a trigonometric identity relationship. Specifically, for any angle [tex]\(\theta\)[/tex]:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
We will use this identity to simplify our given equation. Substitute [tex]\(\sec^2 \theta\)[/tex] with [tex]\(1 + \tan^2 \theta\)[/tex]:
[tex]\[ 7 (1 + \tan^2 \theta) + \tan^2 \theta = 15 \][/tex]
Expand and combine like terms:
[tex]\[ 7 + 7 \tan^2 \theta + \tan^2 \theta = 15 \][/tex]
[tex]\[ 7 + 8 \tan^2 \theta = 15 \][/tex]
Isolate the term involving [tex]\(\tan^2 \theta\)[/tex]:
[tex]\[ 8 \tan^2 \theta = 15 - 7 \][/tex]
[tex]\[ 8 \tan^2 \theta = 8 \][/tex]
Now divide both sides by 8:
[tex]\[ \tan^2 \theta = 1 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \tan \theta = \pm 1 \][/tex]
We now need to determine the angles [tex]\(\theta\)[/tex] where the tangent is [tex]\(\pm 1\)[/tex]. Recall the values of [tex]\(\theta\)[/tex] in one full circle (from [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex] radians) where this occurs:
1. [tex]\(\tan \theta = 1\)[/tex] at [tex]\(\theta = \frac{\pi}{4} \)[/tex] and [tex]\(\theta = \frac{5\pi}{4}\)[/tex].
2. [tex]\(\tan \theta = -1\)[/tex] at [tex]\(\theta = \frac{3\pi}{4}\)[/tex] and [tex]\(\theta = \frac{7\pi}{4}\)[/tex].
However, [tex]\(\tan \theta\)[/tex] repeats every [tex]\(\pi\)[/tex] radians. Therefore, we can simply use the general solutions for these values within the range of [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex]. Thus, the angles are:
[tex]\[ \theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4} \][/tex]
To also consider angles in other quadrants, let's include the negative rotations:
[tex]\[ \theta = -\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
Therefore, the complete set of solutions is:
[tex]\[ \theta = -\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
These are the angles [tex]\(\theta\)[/tex] where the given equation [tex]\(7 \sec^2 \theta + \tan^2 \theta = 15\)[/tex] holds true.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.