Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the equation step-by-step:
Given the equation:
[tex]\[ 7 \sec^2 \theta + \tan^2 \theta = 15 \][/tex]
First, recall that the secant function and the tangent function have a trigonometric identity relationship. Specifically, for any angle [tex]\(\theta\)[/tex]:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
We will use this identity to simplify our given equation. Substitute [tex]\(\sec^2 \theta\)[/tex] with [tex]\(1 + \tan^2 \theta\)[/tex]:
[tex]\[ 7 (1 + \tan^2 \theta) + \tan^2 \theta = 15 \][/tex]
Expand and combine like terms:
[tex]\[ 7 + 7 \tan^2 \theta + \tan^2 \theta = 15 \][/tex]
[tex]\[ 7 + 8 \tan^2 \theta = 15 \][/tex]
Isolate the term involving [tex]\(\tan^2 \theta\)[/tex]:
[tex]\[ 8 \tan^2 \theta = 15 - 7 \][/tex]
[tex]\[ 8 \tan^2 \theta = 8 \][/tex]
Now divide both sides by 8:
[tex]\[ \tan^2 \theta = 1 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \tan \theta = \pm 1 \][/tex]
We now need to determine the angles [tex]\(\theta\)[/tex] where the tangent is [tex]\(\pm 1\)[/tex]. Recall the values of [tex]\(\theta\)[/tex] in one full circle (from [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex] radians) where this occurs:
1. [tex]\(\tan \theta = 1\)[/tex] at [tex]\(\theta = \frac{\pi}{4} \)[/tex] and [tex]\(\theta = \frac{5\pi}{4}\)[/tex].
2. [tex]\(\tan \theta = -1\)[/tex] at [tex]\(\theta = \frac{3\pi}{4}\)[/tex] and [tex]\(\theta = \frac{7\pi}{4}\)[/tex].
However, [tex]\(\tan \theta\)[/tex] repeats every [tex]\(\pi\)[/tex] radians. Therefore, we can simply use the general solutions for these values within the range of [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex]. Thus, the angles are:
[tex]\[ \theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4} \][/tex]
To also consider angles in other quadrants, let's include the negative rotations:
[tex]\[ \theta = -\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
Therefore, the complete set of solutions is:
[tex]\[ \theta = -\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
These are the angles [tex]\(\theta\)[/tex] where the given equation [tex]\(7 \sec^2 \theta + \tan^2 \theta = 15\)[/tex] holds true.
Given the equation:
[tex]\[ 7 \sec^2 \theta + \tan^2 \theta = 15 \][/tex]
First, recall that the secant function and the tangent function have a trigonometric identity relationship. Specifically, for any angle [tex]\(\theta\)[/tex]:
[tex]\[ \sec^2 \theta = 1 + \tan^2 \theta \][/tex]
We will use this identity to simplify our given equation. Substitute [tex]\(\sec^2 \theta\)[/tex] with [tex]\(1 + \tan^2 \theta\)[/tex]:
[tex]\[ 7 (1 + \tan^2 \theta) + \tan^2 \theta = 15 \][/tex]
Expand and combine like terms:
[tex]\[ 7 + 7 \tan^2 \theta + \tan^2 \theta = 15 \][/tex]
[tex]\[ 7 + 8 \tan^2 \theta = 15 \][/tex]
Isolate the term involving [tex]\(\tan^2 \theta\)[/tex]:
[tex]\[ 8 \tan^2 \theta = 15 - 7 \][/tex]
[tex]\[ 8 \tan^2 \theta = 8 \][/tex]
Now divide both sides by 8:
[tex]\[ \tan^2 \theta = 1 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \tan \theta = \pm 1 \][/tex]
We now need to determine the angles [tex]\(\theta\)[/tex] where the tangent is [tex]\(\pm 1\)[/tex]. Recall the values of [tex]\(\theta\)[/tex] in one full circle (from [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex] radians) where this occurs:
1. [tex]\(\tan \theta = 1\)[/tex] at [tex]\(\theta = \frac{\pi}{4} \)[/tex] and [tex]\(\theta = \frac{5\pi}{4}\)[/tex].
2. [tex]\(\tan \theta = -1\)[/tex] at [tex]\(\theta = \frac{3\pi}{4}\)[/tex] and [tex]\(\theta = \frac{7\pi}{4}\)[/tex].
However, [tex]\(\tan \theta\)[/tex] repeats every [tex]\(\pi\)[/tex] radians. Therefore, we can simply use the general solutions for these values within the range of [tex]\(0\)[/tex] to [tex]\(2\pi\)[/tex]. Thus, the angles are:
[tex]\[ \theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4} \][/tex]
To also consider angles in other quadrants, let's include the negative rotations:
[tex]\[ \theta = -\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
Therefore, the complete set of solutions is:
[tex]\[ \theta = -\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \][/tex]
These are the angles [tex]\(\theta\)[/tex] where the given equation [tex]\(7 \sec^2 \theta + \tan^2 \theta = 15\)[/tex] holds true.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.