Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve the equation [tex]\(3 \tan \theta - \sqrt{3} = 0\)[/tex] in a detailed step-by-step manner.
### Step 1: Isolate the [tex]\(\tan \theta\)[/tex] term
First, add [tex]\(\sqrt{3}\)[/tex] to both sides of the equation to isolate the [tex]\(\tan \theta\)[/tex] term on the left-hand side:
[tex]\[ 3 \tan \theta - \sqrt{3} + \sqrt{3} = 0 + \sqrt{3} \][/tex]
This simplifies to:
[tex]\[ 3 \tan \theta = \sqrt{3} \][/tex]
### Step 2: Solve for [tex]\(\tan \theta\)[/tex]
Next, divide both sides of the equation by 3 to solve for [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{\sqrt{3}}{3} \][/tex]
### Step 3: Find the angle [tex]\(\theta\)[/tex]
To find the angle [tex]\(\theta\)[/tex] that satisfies [tex]\(\tan \theta = \frac{\sqrt{3}}{3}\)[/tex], we use the inverse tangent function (also known as arctangent):
[tex]\[ \theta = \arctan\left(\frac{\sqrt{3}}{3}\right) \][/tex]
### Step 4: Express [tex]\(\theta\)[/tex] in radians and degrees
The result of [tex]\(\arctan\left(\frac{\sqrt{3}}{3}\right)\)[/tex] is approximately [tex]\(0.5236\)[/tex] radians. To convert this to degrees, we use the conversion factor [tex]\(1 \text{ radian} = \frac{180}{\pi} \text{ degrees}\)[/tex]:
[tex]\[ \theta \approx 0.5236 \text{ radians} \][/tex]
To convert [tex]\(0.5236\)[/tex] radians to degrees:
[tex]\[ \theta \approx 0.5236 \times \left(\frac{180}{\pi}\right) \approx 30 \text{ degrees} \][/tex]
### Step 5: Final Answer
Thus, the angle [tex]\(\theta\)[/tex] that satisfies the equation [tex]\(3 \tan \theta - \sqrt{3} = 0\)[/tex] is approximately:
[tex]\[ \theta \approx 0.5236 \text{ radians} \quad \text{or} \quad \theta \approx 30 \text{ degrees} \][/tex]
Hence, these are the solutions for [tex]\(\theta\)[/tex].
### Step 1: Isolate the [tex]\(\tan \theta\)[/tex] term
First, add [tex]\(\sqrt{3}\)[/tex] to both sides of the equation to isolate the [tex]\(\tan \theta\)[/tex] term on the left-hand side:
[tex]\[ 3 \tan \theta - \sqrt{3} + \sqrt{3} = 0 + \sqrt{3} \][/tex]
This simplifies to:
[tex]\[ 3 \tan \theta = \sqrt{3} \][/tex]
### Step 2: Solve for [tex]\(\tan \theta\)[/tex]
Next, divide both sides of the equation by 3 to solve for [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{\sqrt{3}}{3} \][/tex]
### Step 3: Find the angle [tex]\(\theta\)[/tex]
To find the angle [tex]\(\theta\)[/tex] that satisfies [tex]\(\tan \theta = \frac{\sqrt{3}}{3}\)[/tex], we use the inverse tangent function (also known as arctangent):
[tex]\[ \theta = \arctan\left(\frac{\sqrt{3}}{3}\right) \][/tex]
### Step 4: Express [tex]\(\theta\)[/tex] in radians and degrees
The result of [tex]\(\arctan\left(\frac{\sqrt{3}}{3}\right)\)[/tex] is approximately [tex]\(0.5236\)[/tex] radians. To convert this to degrees, we use the conversion factor [tex]\(1 \text{ radian} = \frac{180}{\pi} \text{ degrees}\)[/tex]:
[tex]\[ \theta \approx 0.5236 \text{ radians} \][/tex]
To convert [tex]\(0.5236\)[/tex] radians to degrees:
[tex]\[ \theta \approx 0.5236 \times \left(\frac{180}{\pi}\right) \approx 30 \text{ degrees} \][/tex]
### Step 5: Final Answer
Thus, the angle [tex]\(\theta\)[/tex] that satisfies the equation [tex]\(3 \tan \theta - \sqrt{3} = 0\)[/tex] is approximately:
[tex]\[ \theta \approx 0.5236 \text{ radians} \quad \text{or} \quad \theta \approx 30 \text{ degrees} \][/tex]
Hence, these are the solutions for [tex]\(\theta\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.