Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve the equation [tex]\(3 \tan \theta - \sqrt{3} = 0\)[/tex] in a detailed step-by-step manner.
### Step 1: Isolate the [tex]\(\tan \theta\)[/tex] term
First, add [tex]\(\sqrt{3}\)[/tex] to both sides of the equation to isolate the [tex]\(\tan \theta\)[/tex] term on the left-hand side:
[tex]\[ 3 \tan \theta - \sqrt{3} + \sqrt{3} = 0 + \sqrt{3} \][/tex]
This simplifies to:
[tex]\[ 3 \tan \theta = \sqrt{3} \][/tex]
### Step 2: Solve for [tex]\(\tan \theta\)[/tex]
Next, divide both sides of the equation by 3 to solve for [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{\sqrt{3}}{3} \][/tex]
### Step 3: Find the angle [tex]\(\theta\)[/tex]
To find the angle [tex]\(\theta\)[/tex] that satisfies [tex]\(\tan \theta = \frac{\sqrt{3}}{3}\)[/tex], we use the inverse tangent function (also known as arctangent):
[tex]\[ \theta = \arctan\left(\frac{\sqrt{3}}{3}\right) \][/tex]
### Step 4: Express [tex]\(\theta\)[/tex] in radians and degrees
The result of [tex]\(\arctan\left(\frac{\sqrt{3}}{3}\right)\)[/tex] is approximately [tex]\(0.5236\)[/tex] radians. To convert this to degrees, we use the conversion factor [tex]\(1 \text{ radian} = \frac{180}{\pi} \text{ degrees}\)[/tex]:
[tex]\[ \theta \approx 0.5236 \text{ radians} \][/tex]
To convert [tex]\(0.5236\)[/tex] radians to degrees:
[tex]\[ \theta \approx 0.5236 \times \left(\frac{180}{\pi}\right) \approx 30 \text{ degrees} \][/tex]
### Step 5: Final Answer
Thus, the angle [tex]\(\theta\)[/tex] that satisfies the equation [tex]\(3 \tan \theta - \sqrt{3} = 0\)[/tex] is approximately:
[tex]\[ \theta \approx 0.5236 \text{ radians} \quad \text{or} \quad \theta \approx 30 \text{ degrees} \][/tex]
Hence, these are the solutions for [tex]\(\theta\)[/tex].
### Step 1: Isolate the [tex]\(\tan \theta\)[/tex] term
First, add [tex]\(\sqrt{3}\)[/tex] to both sides of the equation to isolate the [tex]\(\tan \theta\)[/tex] term on the left-hand side:
[tex]\[ 3 \tan \theta - \sqrt{3} + \sqrt{3} = 0 + \sqrt{3} \][/tex]
This simplifies to:
[tex]\[ 3 \tan \theta = \sqrt{3} \][/tex]
### Step 2: Solve for [tex]\(\tan \theta\)[/tex]
Next, divide both sides of the equation by 3 to solve for [tex]\(\tan \theta\)[/tex]:
[tex]\[ \tan \theta = \frac{\sqrt{3}}{3} \][/tex]
### Step 3: Find the angle [tex]\(\theta\)[/tex]
To find the angle [tex]\(\theta\)[/tex] that satisfies [tex]\(\tan \theta = \frac{\sqrt{3}}{3}\)[/tex], we use the inverse tangent function (also known as arctangent):
[tex]\[ \theta = \arctan\left(\frac{\sqrt{3}}{3}\right) \][/tex]
### Step 4: Express [tex]\(\theta\)[/tex] in radians and degrees
The result of [tex]\(\arctan\left(\frac{\sqrt{3}}{3}\right)\)[/tex] is approximately [tex]\(0.5236\)[/tex] radians. To convert this to degrees, we use the conversion factor [tex]\(1 \text{ radian} = \frac{180}{\pi} \text{ degrees}\)[/tex]:
[tex]\[ \theta \approx 0.5236 \text{ radians} \][/tex]
To convert [tex]\(0.5236\)[/tex] radians to degrees:
[tex]\[ \theta \approx 0.5236 \times \left(\frac{180}{\pi}\right) \approx 30 \text{ degrees} \][/tex]
### Step 5: Final Answer
Thus, the angle [tex]\(\theta\)[/tex] that satisfies the equation [tex]\(3 \tan \theta - \sqrt{3} = 0\)[/tex] is approximately:
[tex]\[ \theta \approx 0.5236 \text{ radians} \quad \text{or} \quad \theta \approx 30 \text{ degrees} \][/tex]
Hence, these are the solutions for [tex]\(\theta\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.