Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To convert the fraction [tex]\(\frac{w-3}{w+5}\)[/tex] to an equivalent fraction with the denominator [tex]\(w^2 + w - 20\)[/tex], we need to ensure that the numerators and denominators are adjusted properly so that the values of the fractions remain unchanged.
1. Identify the Original Fraction:
The given fraction is [tex]\(\frac{w-3}{w+5}\)[/tex].
2. Factor the Target Denominator:
The target denominator is [tex]\(w^2 + w - 20\)[/tex]. We need to see if this can be factored.
[tex]\[ w^2 + w - 20 = (w + 5)(w - 4) \][/tex]
3. Rewriting the Target Denominator:
Given that the original fraction's denominator is [tex]\(w + 5\)[/tex], we recognize that:
[tex]\[ \frac{w-3}{w+5} = \frac{(w-3) \cdot \frac{(w-4)}{(w-4)}}{(w+5) \cdot \frac{(w-4)}{(w-4)}} = \frac{(w-3)(w-4)}{(w+5)(w-4)} \][/tex]
4. Multiply the Numerator and Denominator:
Multiply the numerator and the denominator by [tex]\((w - 4)\)[/tex] to obtain the equivalent fraction with the new denominator [tex]\(w^2 + w - 20\)[/tex]:
[tex]\[ \frac{(w - 3)(w - 4)}{(w + 5)(w - 4)} = \frac{(w - 3)(w - 4)}{w^2 + w - 20} \][/tex]
5. Expand the Numerator:
Expand [tex]\((w - 3)(w - 4)\)[/tex]:
[tex]\[ (w - 3)(w - 4) = w(w - 4) - 3(w - 4) = w^2 - 4w - 3w + 12 = w^2 - 7w + 12 \][/tex]
6. Equivalent Fraction:
Therefore, the equivalent fraction with the denominator [tex]\(w^2 + w - 20\)[/tex] is:
[tex]\( \frac{w^2 - 7w + 12}{w^2 + w - 20} \)[/tex]
Thus, the correct answer is:
D. [tex]\(\frac{w^2 - 7w + 12}{w^2 + w - 20}\)[/tex]
1. Identify the Original Fraction:
The given fraction is [tex]\(\frac{w-3}{w+5}\)[/tex].
2. Factor the Target Denominator:
The target denominator is [tex]\(w^2 + w - 20\)[/tex]. We need to see if this can be factored.
[tex]\[ w^2 + w - 20 = (w + 5)(w - 4) \][/tex]
3. Rewriting the Target Denominator:
Given that the original fraction's denominator is [tex]\(w + 5\)[/tex], we recognize that:
[tex]\[ \frac{w-3}{w+5} = \frac{(w-3) \cdot \frac{(w-4)}{(w-4)}}{(w+5) \cdot \frac{(w-4)}{(w-4)}} = \frac{(w-3)(w-4)}{(w+5)(w-4)} \][/tex]
4. Multiply the Numerator and Denominator:
Multiply the numerator and the denominator by [tex]\((w - 4)\)[/tex] to obtain the equivalent fraction with the new denominator [tex]\(w^2 + w - 20\)[/tex]:
[tex]\[ \frac{(w - 3)(w - 4)}{(w + 5)(w - 4)} = \frac{(w - 3)(w - 4)}{w^2 + w - 20} \][/tex]
5. Expand the Numerator:
Expand [tex]\((w - 3)(w - 4)\)[/tex]:
[tex]\[ (w - 3)(w - 4) = w(w - 4) - 3(w - 4) = w^2 - 4w - 3w + 12 = w^2 - 7w + 12 \][/tex]
6. Equivalent Fraction:
Therefore, the equivalent fraction with the denominator [tex]\(w^2 + w - 20\)[/tex] is:
[tex]\( \frac{w^2 - 7w + 12}{w^2 + w - 20} \)[/tex]
Thus, the correct answer is:
D. [tex]\(\frac{w^2 - 7w + 12}{w^2 + w - 20}\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.