Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure! To determine the value of the second charge [tex]\( q_2 \)[/tex] given the information in the problem, we can use Coulomb's Law. Coulomb's Law states that the force between two charges is given by:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force between the charges,
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges,
- [tex]\( k \)[/tex] is Coulomb’s constant, approximately [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \)[/tex].
Given:
- [tex]\( q_1 = -0.00325 \, \text{C} \)[/tex]
- [tex]\( F = 48900 \, \text{N} \)[/tex]
- [tex]\( r = 5.62 \, \text{m} \)[/tex]
We need to solve for [tex]\( q_2 \)[/tex]. First, we rearrange Coulomb's Law to solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot |q_1|} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ q_2 = \frac{48900 \cdot (5.62)^2}{8.99 \times 10^9 \cdot | -0.00325 |} \][/tex]
Evaluating the expression inside gives us:
[tex]\[ q_2 = \frac{48900 \cdot 31.5844}{8.99 \times 10^9 \cdot 0.00325} \][/tex]
Let's simplify this step-by-step:
1. Compute the numerator:
[tex]\[ 48900 \cdot 31.5844 \approx 1544642.76 \][/tex]
2. Compute the denominator:
[tex]\[ 8.99 \times 10^9 \cdot 0.00325 \approx 2.92175 \times 10^7 \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ q_2 = \frac{1544642.76}{2.92175 \times 10^7} \approx 0.05286137280739284 \][/tex]
Since the force is repelling and [tex]\( q_1 \)[/tex] is negative, [tex]\( q_2 \)[/tex] should have the same sign as [tex]\( q_1 \)[/tex]. Therefore, [tex]\( q_2 \)[/tex] is also negative.
The value of the second charge [tex]\( q_2 \)[/tex] is:
[tex]\[ q_2 \approx -0.0529 \, \text{C} \][/tex]
Thus, the charge [tex]\( q_2 \)[/tex] is approximately [tex]\( -0.0529 \, \text{C} \)[/tex].
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the force between the charges,
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges,
- [tex]\( k \)[/tex] is Coulomb’s constant, approximately [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \)[/tex].
Given:
- [tex]\( q_1 = -0.00325 \, \text{C} \)[/tex]
- [tex]\( F = 48900 \, \text{N} \)[/tex]
- [tex]\( r = 5.62 \, \text{m} \)[/tex]
We need to solve for [tex]\( q_2 \)[/tex]. First, we rearrange Coulomb's Law to solve for [tex]\( q_2 \)[/tex]:
[tex]\[ q_2 = \frac{F \cdot r^2}{k \cdot |q_1|} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ q_2 = \frac{48900 \cdot (5.62)^2}{8.99 \times 10^9 \cdot | -0.00325 |} \][/tex]
Evaluating the expression inside gives us:
[tex]\[ q_2 = \frac{48900 \cdot 31.5844}{8.99 \times 10^9 \cdot 0.00325} \][/tex]
Let's simplify this step-by-step:
1. Compute the numerator:
[tex]\[ 48900 \cdot 31.5844 \approx 1544642.76 \][/tex]
2. Compute the denominator:
[tex]\[ 8.99 \times 10^9 \cdot 0.00325 \approx 2.92175 \times 10^7 \][/tex]
3. Divide the numerator by the denominator:
[tex]\[ q_2 = \frac{1544642.76}{2.92175 \times 10^7} \approx 0.05286137280739284 \][/tex]
Since the force is repelling and [tex]\( q_1 \)[/tex] is negative, [tex]\( q_2 \)[/tex] should have the same sign as [tex]\( q_1 \)[/tex]. Therefore, [tex]\( q_2 \)[/tex] is also negative.
The value of the second charge [tex]\( q_2 \)[/tex] is:
[tex]\[ q_2 \approx -0.0529 \, \text{C} \][/tex]
Thus, the charge [tex]\( q_2 \)[/tex] is approximately [tex]\( -0.0529 \, \text{C} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.