Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's step through the solution to find the electric force exerted between two protons located [tex]\(1.00 \times 10^{-15}\)[/tex] meters apart.
We will use Coulomb's law, which states that the electric force ([tex]\( F \)[/tex]) between two point charges is given by:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
Where:
- [tex]\( q_1 \)[/tex] is the charge of the first proton,
- [tex]\( q_2 \)[/tex] is the charge of the second proton,
- [tex]\( r \)[/tex] is the distance between the protons,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex]).
Now, let's plug in the given values:
1. The charge of a proton [tex]\( q = 1.60 \times 10^{-19} \)[/tex] Coulombs.
2. The distance between the protons [tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex].
Step-by-Step Calculation:
1. Identify the charges:
[tex]\( q_1 = 1.60 \times 10^{-19} \)[/tex] C and [tex]\( q_2 = 1.60 \times 10^{-19} \)[/tex] C.
2. Identify the distance between the charges:
[tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Apply Coulomb's law:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
4. Plug in the values for [tex]\( q_1, q_2, \)[/tex], and [tex]\( r \)[/tex]:
[tex]\[ F = 8.99 \times 10^9 \frac{(1.60 \times 10^{-19})^2}{(1.00 \times 10^{-15})^2} \][/tex]
5. Compute the squared terms:
[tex]\[ q_1 \times q_2 = (1.60 \times 10^{-19}) \times (1.60 \times 10^{-19}) = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]
[tex]\[ r^2 = (1.00 \times 10^{-15})^2 = 1.00 \times 10^{-30} \, \text{m}^2 \][/tex]
6. Now, compute the electric force:
[tex]\[ F = 8.99 \times 10^9 \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} \][/tex]
7. Simplify the fraction:
[tex]\[ \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} = 2.56 \times 10^{-8} \][/tex]
8. Multiply by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \times 2.56 \times 10^{-8} \][/tex]
[tex]\[ F = 8.99 \times 2.56 \times 10^1 \][/tex]
[tex]\[ F = 230.14399999999995 \, \text{N} \][/tex]
So, the electric force that the two protons exert on each other is approximately:
[tex]\[ F \approx 230.14 \, \text{N} \][/tex]
Therefore, the electric force between the two protons is [tex]\( \boxed{230.14 \, \text{N}} \)[/tex].
We will use Coulomb's law, which states that the electric force ([tex]\( F \)[/tex]) between two point charges is given by:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
Where:
- [tex]\( q_1 \)[/tex] is the charge of the first proton,
- [tex]\( q_2 \)[/tex] is the charge of the second proton,
- [tex]\( r \)[/tex] is the distance between the protons,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex]).
Now, let's plug in the given values:
1. The charge of a proton [tex]\( q = 1.60 \times 10^{-19} \)[/tex] Coulombs.
2. The distance between the protons [tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex].
Step-by-Step Calculation:
1. Identify the charges:
[tex]\( q_1 = 1.60 \times 10^{-19} \)[/tex] C and [tex]\( q_2 = 1.60 \times 10^{-19} \)[/tex] C.
2. Identify the distance between the charges:
[tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Apply Coulomb's law:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
4. Plug in the values for [tex]\( q_1, q_2, \)[/tex], and [tex]\( r \)[/tex]:
[tex]\[ F = 8.99 \times 10^9 \frac{(1.60 \times 10^{-19})^2}{(1.00 \times 10^{-15})^2} \][/tex]
5. Compute the squared terms:
[tex]\[ q_1 \times q_2 = (1.60 \times 10^{-19}) \times (1.60 \times 10^{-19}) = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]
[tex]\[ r^2 = (1.00 \times 10^{-15})^2 = 1.00 \times 10^{-30} \, \text{m}^2 \][/tex]
6. Now, compute the electric force:
[tex]\[ F = 8.99 \times 10^9 \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} \][/tex]
7. Simplify the fraction:
[tex]\[ \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} = 2.56 \times 10^{-8} \][/tex]
8. Multiply by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \times 2.56 \times 10^{-8} \][/tex]
[tex]\[ F = 8.99 \times 2.56 \times 10^1 \][/tex]
[tex]\[ F = 230.14399999999995 \, \text{N} \][/tex]
So, the electric force that the two protons exert on each other is approximately:
[tex]\[ F \approx 230.14 \, \text{N} \][/tex]
Therefore, the electric force between the two protons is [tex]\( \boxed{230.14 \, \text{N}} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.