Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's step through the solution to find the electric force exerted between two protons located [tex]\(1.00 \times 10^{-15}\)[/tex] meters apart.
We will use Coulomb's law, which states that the electric force ([tex]\( F \)[/tex]) between two point charges is given by:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
Where:
- [tex]\( q_1 \)[/tex] is the charge of the first proton,
- [tex]\( q_2 \)[/tex] is the charge of the second proton,
- [tex]\( r \)[/tex] is the distance between the protons,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex]).
Now, let's plug in the given values:
1. The charge of a proton [tex]\( q = 1.60 \times 10^{-19} \)[/tex] Coulombs.
2. The distance between the protons [tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex].
Step-by-Step Calculation:
1. Identify the charges:
[tex]\( q_1 = 1.60 \times 10^{-19} \)[/tex] C and [tex]\( q_2 = 1.60 \times 10^{-19} \)[/tex] C.
2. Identify the distance between the charges:
[tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Apply Coulomb's law:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
4. Plug in the values for [tex]\( q_1, q_2, \)[/tex], and [tex]\( r \)[/tex]:
[tex]\[ F = 8.99 \times 10^9 \frac{(1.60 \times 10^{-19})^2}{(1.00 \times 10^{-15})^2} \][/tex]
5. Compute the squared terms:
[tex]\[ q_1 \times q_2 = (1.60 \times 10^{-19}) \times (1.60 \times 10^{-19}) = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]
[tex]\[ r^2 = (1.00 \times 10^{-15})^2 = 1.00 \times 10^{-30} \, \text{m}^2 \][/tex]
6. Now, compute the electric force:
[tex]\[ F = 8.99 \times 10^9 \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} \][/tex]
7. Simplify the fraction:
[tex]\[ \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} = 2.56 \times 10^{-8} \][/tex]
8. Multiply by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \times 2.56 \times 10^{-8} \][/tex]
[tex]\[ F = 8.99 \times 2.56 \times 10^1 \][/tex]
[tex]\[ F = 230.14399999999995 \, \text{N} \][/tex]
So, the electric force that the two protons exert on each other is approximately:
[tex]\[ F \approx 230.14 \, \text{N} \][/tex]
Therefore, the electric force between the two protons is [tex]\( \boxed{230.14 \, \text{N}} \)[/tex].
We will use Coulomb's law, which states that the electric force ([tex]\( F \)[/tex]) between two point charges is given by:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
Where:
- [tex]\( q_1 \)[/tex] is the charge of the first proton,
- [tex]\( q_2 \)[/tex] is the charge of the second proton,
- [tex]\( r \)[/tex] is the distance between the protons,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex]).
Now, let's plug in the given values:
1. The charge of a proton [tex]\( q = 1.60 \times 10^{-19} \)[/tex] Coulombs.
2. The distance between the protons [tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex].
Step-by-Step Calculation:
1. Identify the charges:
[tex]\( q_1 = 1.60 \times 10^{-19} \)[/tex] C and [tex]\( q_2 = 1.60 \times 10^{-19} \)[/tex] C.
2. Identify the distance between the charges:
[tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Apply Coulomb's law:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
4. Plug in the values for [tex]\( q_1, q_2, \)[/tex], and [tex]\( r \)[/tex]:
[tex]\[ F = 8.99 \times 10^9 \frac{(1.60 \times 10^{-19})^2}{(1.00 \times 10^{-15})^2} \][/tex]
5. Compute the squared terms:
[tex]\[ q_1 \times q_2 = (1.60 \times 10^{-19}) \times (1.60 \times 10^{-19}) = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]
[tex]\[ r^2 = (1.00 \times 10^{-15})^2 = 1.00 \times 10^{-30} \, \text{m}^2 \][/tex]
6. Now, compute the electric force:
[tex]\[ F = 8.99 \times 10^9 \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} \][/tex]
7. Simplify the fraction:
[tex]\[ \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} = 2.56 \times 10^{-8} \][/tex]
8. Multiply by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \times 2.56 \times 10^{-8} \][/tex]
[tex]\[ F = 8.99 \times 2.56 \times 10^1 \][/tex]
[tex]\[ F = 230.14399999999995 \, \text{N} \][/tex]
So, the electric force that the two protons exert on each other is approximately:
[tex]\[ F \approx 230.14 \, \text{N} \][/tex]
Therefore, the electric force between the two protons is [tex]\( \boxed{230.14 \, \text{N}} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.