At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's step through the solution to find the electric force exerted between two protons located [tex]\(1.00 \times 10^{-15}\)[/tex] meters apart.
We will use Coulomb's law, which states that the electric force ([tex]\( F \)[/tex]) between two point charges is given by:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
Where:
- [tex]\( q_1 \)[/tex] is the charge of the first proton,
- [tex]\( q_2 \)[/tex] is the charge of the second proton,
- [tex]\( r \)[/tex] is the distance between the protons,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex]).
Now, let's plug in the given values:
1. The charge of a proton [tex]\( q = 1.60 \times 10^{-19} \)[/tex] Coulombs.
2. The distance between the protons [tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex].
Step-by-Step Calculation:
1. Identify the charges:
[tex]\( q_1 = 1.60 \times 10^{-19} \)[/tex] C and [tex]\( q_2 = 1.60 \times 10^{-19} \)[/tex] C.
2. Identify the distance between the charges:
[tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Apply Coulomb's law:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
4. Plug in the values for [tex]\( q_1, q_2, \)[/tex], and [tex]\( r \)[/tex]:
[tex]\[ F = 8.99 \times 10^9 \frac{(1.60 \times 10^{-19})^2}{(1.00 \times 10^{-15})^2} \][/tex]
5. Compute the squared terms:
[tex]\[ q_1 \times q_2 = (1.60 \times 10^{-19}) \times (1.60 \times 10^{-19}) = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]
[tex]\[ r^2 = (1.00 \times 10^{-15})^2 = 1.00 \times 10^{-30} \, \text{m}^2 \][/tex]
6. Now, compute the electric force:
[tex]\[ F = 8.99 \times 10^9 \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} \][/tex]
7. Simplify the fraction:
[tex]\[ \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} = 2.56 \times 10^{-8} \][/tex]
8. Multiply by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \times 2.56 \times 10^{-8} \][/tex]
[tex]\[ F = 8.99 \times 2.56 \times 10^1 \][/tex]
[tex]\[ F = 230.14399999999995 \, \text{N} \][/tex]
So, the electric force that the two protons exert on each other is approximately:
[tex]\[ F \approx 230.14 \, \text{N} \][/tex]
Therefore, the electric force between the two protons is [tex]\( \boxed{230.14 \, \text{N}} \)[/tex].
We will use Coulomb's law, which states that the electric force ([tex]\( F \)[/tex]) between two point charges is given by:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
Where:
- [tex]\( q_1 \)[/tex] is the charge of the first proton,
- [tex]\( q_2 \)[/tex] is the charge of the second proton,
- [tex]\( r \)[/tex] is the distance between the protons,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex]).
Now, let's plug in the given values:
1. The charge of a proton [tex]\( q = 1.60 \times 10^{-19} \)[/tex] Coulombs.
2. The distance between the protons [tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex].
Step-by-Step Calculation:
1. Identify the charges:
[tex]\( q_1 = 1.60 \times 10^{-19} \)[/tex] C and [tex]\( q_2 = 1.60 \times 10^{-19} \)[/tex] C.
2. Identify the distance between the charges:
[tex]\( r = 1.00 \times 10^{-15} \)[/tex] meters.
3. Apply Coulomb's law:
[tex]\[ F = k \frac{|q_1 q_2|}{r^2} \][/tex]
4. Plug in the values for [tex]\( q_1, q_2, \)[/tex], and [tex]\( r \)[/tex]:
[tex]\[ F = 8.99 \times 10^9 \frac{(1.60 \times 10^{-19})^2}{(1.00 \times 10^{-15})^2} \][/tex]
5. Compute the squared terms:
[tex]\[ q_1 \times q_2 = (1.60 \times 10^{-19}) \times (1.60 \times 10^{-19}) = 2.56 \times 10^{-38} \, \text{C}^2 \][/tex]
[tex]\[ r^2 = (1.00 \times 10^{-15})^2 = 1.00 \times 10^{-30} \, \text{m}^2 \][/tex]
6. Now, compute the electric force:
[tex]\[ F = 8.99 \times 10^9 \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} \][/tex]
7. Simplify the fraction:
[tex]\[ \frac{2.56 \times 10^{-38}}{1.00 \times 10^{-30}} = 2.56 \times 10^{-8} \][/tex]
8. Multiply by Coulomb's constant:
[tex]\[ F = 8.99 \times 10^9 \times 2.56 \times 10^{-8} \][/tex]
[tex]\[ F = 8.99 \times 2.56 \times 10^1 \][/tex]
[tex]\[ F = 230.14399999999995 \, \text{N} \][/tex]
So, the electric force that the two protons exert on each other is approximately:
[tex]\[ F \approx 230.14 \, \text{N} \][/tex]
Therefore, the electric force between the two protons is [tex]\( \boxed{230.14 \, \text{N}} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.