Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Two parallel plates are charged with [tex]$7.58 \cdot 10^{-9} C$[/tex] of charge. What must the area of the plates be to create an electric field of [tex]$47500 \, N/C$[/tex]?

[tex] \text{Area} \, (m^2) = \, ? [/tex]

Sagot :

Sure! Let's work through this problem step-by-step:

### Problem Statement:
We need to find the area of the plates necessary to create a specific electric field between two parallel plates charged with a given amount of charge.

Given:
- Charge ([tex]\(q\)[/tex]) = [tex]\(7.58 \times 10^{-9} \, \text{C}\)[/tex]
- Electric Field ([tex]\(E\)[/tex]) = [tex]\(47,500 \, \text{N/C}\)[/tex]
- Permittivity of free space ([tex]\(\epsilon_0\)[/tex]) = [tex]\(8.85 \times 10^{-12} \, \text{F/m}\)[/tex]

### Step-by-Step Solution:

1. Understand the Relationship:

The electric field ([tex]\(E\)[/tex]) between two parallel plates is given by the equation:
[tex]\[ E = \frac{\sigma}{\epsilon_0} \][/tex]
where [tex]\(\sigma\)[/tex] is the surface charge density, defined as:
[tex]\[ \sigma = \frac{q}{A} \][/tex]
Here, [tex]\(q\)[/tex] is the charge and [tex]\(A\)[/tex] is the area of one of the plates.

2. Combine the Equations:

Substituting [tex]\(\sigma\)[/tex] into the electric field equation gives us:
[tex]\[ E = \frac{q / A}{\epsilon_0} \][/tex]
Rearranging to solve for the area ([tex]\(A\)[/tex]):
[tex]\[ A = \frac{q}{E \cdot \epsilon_0} \][/tex]

3. Substitute the Known Values:

Plugging in the given values:
[tex]\[ A = \frac{7.58 \times 10^{-9} \, \text{C}}{47,500 \, \text{N/C} \cdot 8.85 \times 10^{-12} \, \text{F/m}} \][/tex]

4. Calculate the Area:

Perform the calculations:
[tex]\[ A = \frac{7.58 \times 10^{-9}}{47,500 \times 8.85 \times 10^{-12}} \][/tex]

5. Final Result:

Solving the above expression yields:
[tex]\[ A \approx 0.0180315 \, \text{m}^2 \][/tex]

Hence, the area of the plates must be approximately [tex]\(0.0180315 \, \text{m}^2\)[/tex] to create an electric field of [tex]\(47,500 \, \text{N/C}\)[/tex].