Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's find the equation of the hyperbola step by step.
1. Identifying key values:
- Since the vertices of the hyperbola are given as [tex]\((\pm \sqrt{10}, 0)\)[/tex], the distance from the center to each vertex is [tex]\(\sqrt{10}\)[/tex]. This gives us the value of [tex]\(a\)[/tex]:
[tex]\[ a = \sqrt{10} \][/tex]
- The length of the conjugate axis is 14, so the distance from the center to the endpoints of the conjugate axis is half of this length:
[tex]\[ b = \frac{14}{2} = 7 \][/tex]
2. Calculating [tex]\(a^2\)[/tex] and [tex]\(b^2\)[/tex]:
- The value of [tex]\(a^2\)[/tex]:
[tex]\[ a^2 = (\sqrt{10})^2 = 10 \][/tex]
- The value of [tex]\(b^2\)[/tex]:
[tex]\[ b^2 = 7^2 = 49 \][/tex]
3. Formulating the equation:
For a hyperbola centered at the origin with a horizontal transverse axis, the standard form of the equation is:
[tex]\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \][/tex]
Substituting the values of [tex]\(a^2\)[/tex] and [tex]\(b^2\)[/tex]:
[tex]\[ \frac{x^2}{10} - \frac{y^2}{49} = 1 \][/tex]
4. The final equation:
The equation of the hyperbola is:
[tex]\[ \frac{x^2}{10} - \frac{y^2}{49} = 1 \][/tex]
1. Identifying key values:
- Since the vertices of the hyperbola are given as [tex]\((\pm \sqrt{10}, 0)\)[/tex], the distance from the center to each vertex is [tex]\(\sqrt{10}\)[/tex]. This gives us the value of [tex]\(a\)[/tex]:
[tex]\[ a = \sqrt{10} \][/tex]
- The length of the conjugate axis is 14, so the distance from the center to the endpoints of the conjugate axis is half of this length:
[tex]\[ b = \frac{14}{2} = 7 \][/tex]
2. Calculating [tex]\(a^2\)[/tex] and [tex]\(b^2\)[/tex]:
- The value of [tex]\(a^2\)[/tex]:
[tex]\[ a^2 = (\sqrt{10})^2 = 10 \][/tex]
- The value of [tex]\(b^2\)[/tex]:
[tex]\[ b^2 = 7^2 = 49 \][/tex]
3. Formulating the equation:
For a hyperbola centered at the origin with a horizontal transverse axis, the standard form of the equation is:
[tex]\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \][/tex]
Substituting the values of [tex]\(a^2\)[/tex] and [tex]\(b^2\)[/tex]:
[tex]\[ \frac{x^2}{10} - \frac{y^2}{49} = 1 \][/tex]
4. The final equation:
The equation of the hyperbola is:
[tex]\[ \frac{x^2}{10} - \frac{y^2}{49} = 1 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.