Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

A set of charged plates has an area of [tex]$8.22 \times 10^{-4} \, m^2$[/tex] and a separation of [tex]$2.42 \times 10^{-5} \, m$[/tex]. The plates are charged with [tex][tex]$5.24 \times 10^{-8} \, C$[/tex][/tex]. What is the potential difference [tex]V[/tex] between the plates? (Unit = V)

Sagot :

To find the potential difference [tex]\( V \)[/tex] between the plates, we can follow these steps:

1. Determine the surface charge density [tex]\(\sigma\)[/tex]:
The surface charge density [tex]\(\sigma\)[/tex] is defined as the charge per unit area:
[tex]\[ \sigma = \frac{\text{charge}}{\text{area}} \][/tex]
Given:
- Charge [tex]\(Q = 5.24 \times 10^{-8} \, \text{C}\)[/tex]
- Area [tex]\(A = 8.22 \times 10^{-4} \, \text{m}^2\)[/tex]

Substituting the values:
[tex]\[ \sigma = \frac{5.24 \times 10^{-8}}{8.22 \times 10^{-4}} \approx 6.3747 \times 10^{-5} \, \text{C/m}^2 \][/tex]

2. Calculate the electric field [tex]\( E \)[/tex]:
The electric field [tex]\( E \)[/tex] between two parallel plates is given by [tex]\(\frac{\sigma}{\epsilon_0}\)[/tex], where [tex]\(\epsilon_0\)[/tex] is the permittivity of free space (vacuum permittivity):
[tex]\[ E = \frac{\sigma}{\epsilon_0} \][/tex]
Given:
- [tex]\(\epsilon_0 = 8.854 \times 10^{-12} \, \text{F/m}\)[/tex]
- [tex]\(\sigma = 6.3747 \times 10^{-5} \, \text{C/m}^2\)[/tex]

Substituting the values:
[tex]\[ E = \frac{6.3747 \times 10^{-5}}{8.854 \times 10^{-12}} \approx 7199792.03 \, \text{N/C} \][/tex]

3. Determine the potential difference [tex]\( V \)[/tex]:
The potential difference [tex]\( V \)[/tex] between the plates is given by [tex]\( V = E \times \text{separation} \)[/tex], where the separation is the distance between the plates:
[tex]\[ V = E \times d \][/tex]
Given:
- Electric field [tex]\( E = 7199792.03 \, \text{N/C} \)[/tex]
- Separation [tex]\( d = 2.42 \times 10^{-5} \, \text{m} \)[/tex]

Substituting the values:
[tex]\[ V = 7199792.03 \times 2.42 \times 10^{-5} \approx 174.235 \, \text{V} \][/tex]

Therefore, the potential difference [tex]\( V \)[/tex] between the plates is approximately [tex]\( 174.235 \, \text{V} \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.