Answered

Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Simplify the expression:

[tex]\[ 5 \frac{\sqrt{1+\tan^2 \theta}}{\sqrt{1-\sin^2 \theta}} \][/tex]


Sagot :

Certainly! Let's simplify the given expression step by step.

The given expression is:

[tex]\[ 5 \frac{\sqrt{1 + \tan^2 \theta}}{\sqrt{1 - \sin^2 \theta}} \][/tex]

First, recall the fundamental trigonometric identities:

1. Pythagorean Identity for tangent and secant:
[tex]\[ 1 + \tan^2 \theta = \sec^2 \theta \][/tex]

2. Another Pythagorean Identity for sine:
[tex]\[ 1 - \sin^2 \theta = \cos^2 \theta \][/tex]

Using these identities, we can rewrite the expression:

[tex]\[ 5 \frac{\sqrt{1 + \tan^2 \theta}}{\sqrt{1 - \sin^2 \theta}} = 5 \frac{\sqrt{\sec^2 \theta}}{\sqrt{\cos^2 \theta}} \][/tex]

Since [tex]\( \sqrt{\sec^2 \theta} = \sec \theta \)[/tex] and [tex]\( \sqrt{\cos^2 \theta} = \cos \theta \)[/tex], the expression simplifies to:

[tex]\[ 5 \frac{\sec \theta}{\cos \theta} \][/tex]

Next, recall that [tex]\( \sec \theta = \frac{1}{\cos \theta} \)[/tex]:

[tex]\[ 5 \frac{\frac{1}{\cos \theta}}{\cos \theta} = 5 \frac{1}{\cos \theta \cdot \cos \theta} = 5 \frac{1}{\cos^2 \theta} \][/tex]

Since [tex]\( \frac{1}{\cos^2 \theta} = \sec^2 \theta \)[/tex], we have:

[tex]\[ 5 \sec^2 \theta \][/tex]

Thus, the simplified form of the given expression is:

[tex]\[ 5 \sec^2 \theta \][/tex]