At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's break down and solve each part of this question step-by-step.
### Part (a) Finding [tex]\((f \circ g)(x)\)[/tex]:
The notation [tex]\((f \circ g)(x)\)[/tex] represents the composition of the functions [tex]\(f\)[/tex] and [tex]\(g\)[/tex], defined as [tex]\((f \circ g)(x) = f(g(x))\)[/tex]. This means we first apply the function [tex]\(g\)[/tex] to [tex]\(x\)[/tex] and then apply the function [tex]\(f\)[/tex] to the result.
Given:
[tex]\[ f(x) = \frac{5}{x+2} \][/tex]
[tex]\[ g(x) = \frac{1}{x} \][/tex]
First, we find [tex]\(g(x)\)[/tex]:
[tex]\[ g(x) = \frac{1}{x} \][/tex]
Next, we substitute [tex]\(g(x)\)[/tex] into [tex]\(f(x)\)[/tex]:
[tex]\[ f(g(x)) = f\left(\frac{1}{x}\right) = \frac{5}{\left(\frac{1}{x}\right) + 2} \][/tex]
To simplify, we need a common denominator:
[tex]\[ f\left(\frac{1}{x}\right) = \frac{5}{\frac{1 + 2x}{x}} \][/tex]
Recall that dividing by a fraction is the same as multiplying by its reciprocal:
[tex]\[ f\left(\frac{1}{x}\right) = 5 \cdot \frac{x}{1 + 2x} = \frac{5x}{1 + 2x} \][/tex]
Therefore,
[tex]\[ (f \circ g)(x) = \frac{5x}{1 + 2x} \][/tex]
### Part (b) Finding the domain of [tex]\(f \circ g\)[/tex]:
To determine the domain of [tex]\(f \circ g\)[/tex], we need to consider the domains of both [tex]\(f\)[/tex] and [tex]\(g\)[/tex] individually and how they interact in the composition.
1. Domain of [tex]\(g(x) = \frac{1}{x}\)[/tex]:
- [tex]\(g(x)\)[/tex] is defined for all real numbers except [tex]\(x = 0\)[/tex] (since division by zero is undefined).
- Thus, the domain of [tex]\(g\)[/tex] is [tex]\(\mathbb{R} \setminus \{0\}\)[/tex] (all real numbers except [tex]\(0\)[/tex]).
2. Domain of [tex]\(f(x) = \frac{5}{x+2}\)[/tex]:
- [tex]\(f(x)\)[/tex] is defined for all real numbers except [tex]\(x = -2\)[/tex] (since division by zero is undefined).
- In the composition [tex]\(f(g(x))\)[/tex], we need to ensure that the output of [tex]\(g(x)\)[/tex] is within the domain of [tex]\(f\)[/tex].
- So, we require [tex]\(g(x) \neq -2\)[/tex].
3. Find values of [tex]\(x\)[/tex] for which [tex]\(g(x) = -2\)[/tex]:
- Set [tex]\(g(x) = -2\)[/tex]:
[tex]\[ \frac{1}{x} = -2 \][/tex]
- Solve for [tex]\(x\)[/tex]:
[tex]\[ x = -\frac{1}{2} \][/tex]
Therefore, [tex]\(x = -\frac{1}{2}\)[/tex] makes the output of [tex]\(g(x) = -2\)[/tex], which is not in the domain of [tex]\(f\)[/tex].
4. Combining the constraints:
- [tex]\(x\)[/tex] must be in the domain of [tex]\(g\)[/tex], which is [tex]\(x \neq 0\)[/tex].
- [tex]\(x\)[/tex] must also not make [tex]\(g(x) = -2\)[/tex], which means [tex]\(x \neq -\frac{1}{2}\)[/tex].
Therefore, the domain of [tex]\(f \circ g\)[/tex] is:
[tex]\[ \boxed{\text{All real numbers except } 0 \text{ and } -\frac{1}{2}} \][/tex]
### Part (a) Finding [tex]\((f \circ g)(x)\)[/tex]:
The notation [tex]\((f \circ g)(x)\)[/tex] represents the composition of the functions [tex]\(f\)[/tex] and [tex]\(g\)[/tex], defined as [tex]\((f \circ g)(x) = f(g(x))\)[/tex]. This means we first apply the function [tex]\(g\)[/tex] to [tex]\(x\)[/tex] and then apply the function [tex]\(f\)[/tex] to the result.
Given:
[tex]\[ f(x) = \frac{5}{x+2} \][/tex]
[tex]\[ g(x) = \frac{1}{x} \][/tex]
First, we find [tex]\(g(x)\)[/tex]:
[tex]\[ g(x) = \frac{1}{x} \][/tex]
Next, we substitute [tex]\(g(x)\)[/tex] into [tex]\(f(x)\)[/tex]:
[tex]\[ f(g(x)) = f\left(\frac{1}{x}\right) = \frac{5}{\left(\frac{1}{x}\right) + 2} \][/tex]
To simplify, we need a common denominator:
[tex]\[ f\left(\frac{1}{x}\right) = \frac{5}{\frac{1 + 2x}{x}} \][/tex]
Recall that dividing by a fraction is the same as multiplying by its reciprocal:
[tex]\[ f\left(\frac{1}{x}\right) = 5 \cdot \frac{x}{1 + 2x} = \frac{5x}{1 + 2x} \][/tex]
Therefore,
[tex]\[ (f \circ g)(x) = \frac{5x}{1 + 2x} \][/tex]
### Part (b) Finding the domain of [tex]\(f \circ g\)[/tex]:
To determine the domain of [tex]\(f \circ g\)[/tex], we need to consider the domains of both [tex]\(f\)[/tex] and [tex]\(g\)[/tex] individually and how they interact in the composition.
1. Domain of [tex]\(g(x) = \frac{1}{x}\)[/tex]:
- [tex]\(g(x)\)[/tex] is defined for all real numbers except [tex]\(x = 0\)[/tex] (since division by zero is undefined).
- Thus, the domain of [tex]\(g\)[/tex] is [tex]\(\mathbb{R} \setminus \{0\}\)[/tex] (all real numbers except [tex]\(0\)[/tex]).
2. Domain of [tex]\(f(x) = \frac{5}{x+2}\)[/tex]:
- [tex]\(f(x)\)[/tex] is defined for all real numbers except [tex]\(x = -2\)[/tex] (since division by zero is undefined).
- In the composition [tex]\(f(g(x))\)[/tex], we need to ensure that the output of [tex]\(g(x)\)[/tex] is within the domain of [tex]\(f\)[/tex].
- So, we require [tex]\(g(x) \neq -2\)[/tex].
3. Find values of [tex]\(x\)[/tex] for which [tex]\(g(x) = -2\)[/tex]:
- Set [tex]\(g(x) = -2\)[/tex]:
[tex]\[ \frac{1}{x} = -2 \][/tex]
- Solve for [tex]\(x\)[/tex]:
[tex]\[ x = -\frac{1}{2} \][/tex]
Therefore, [tex]\(x = -\frac{1}{2}\)[/tex] makes the output of [tex]\(g(x) = -2\)[/tex], which is not in the domain of [tex]\(f\)[/tex].
4. Combining the constraints:
- [tex]\(x\)[/tex] must be in the domain of [tex]\(g\)[/tex], which is [tex]\(x \neq 0\)[/tex].
- [tex]\(x\)[/tex] must also not make [tex]\(g(x) = -2\)[/tex], which means [tex]\(x \neq -\frac{1}{2}\)[/tex].
Therefore, the domain of [tex]\(f \circ g\)[/tex] is:
[tex]\[ \boxed{\text{All real numbers except } 0 \text{ and } -\frac{1}{2}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.