Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which combination of bracelets Dimitri may have made, we need to check each option against the inequality [tex]\(9x + 20y > 120\)[/tex]:
1. For 3 simple bracelets and 4 deluxe bracelets:
- [tex]\( x = 3 \)[/tex]
- [tex]\( y = 4 \)[/tex]
- Calculate [tex]\(9x + 20y\)[/tex]:
[tex]\[ 9(3) + 20(4) = 27 + 80 = 107 \][/tex]
- Since [tex]\( 107 \leq 120 \)[/tex], this combination does not satisfy the inequality.
2. For 0 simple bracelets and 6 deluxe bracelets:
- [tex]\( x = 0 \)[/tex]
- [tex]\( y = 6 \)[/tex]
- Calculate [tex]\(9x + 20y\)[/tex]:
[tex]\[ 9(0) + 20(6) = 0 + 120 = 120 \][/tex]
- Since [tex]\( 120 \leq 120 \)[/tex], this combination does not satisfy the inequality.
3. For 12 simple bracelets and 0 deluxe bracelets:
- [tex]\( x = 12 \)[/tex]
- [tex]\( y = 0 \)[/tex]
- Calculate [tex]\(9x + 20y\)[/tex]:
[tex]\[ 9(12) + 20(0) = 108 + 0 = 108 \][/tex]
- Since [tex]\( 108 \leq 120 \)[/tex], this combination does not satisfy the inequality.
4. For 7 simple bracelets and 3 deluxe bracelets:
- [tex]\( x = 7 \)[/tex]
- [tex]\( y = 3 \)[/tex]
- Calculate [tex]\(9x + 20y\)[/tex]:
[tex]\[ 9(7) + 20(3) = 63 + 60 = 123 \][/tex]
- Since [tex]\( 123 > 120 \)[/tex], this combination does satisfy the inequality.
From these calculations, we can see that the possible combination of bracelets that Dimitri may have made, satisfying the inequality [tex]\(9x + 20y > 120\)[/tex], is 7 simple bracelets and 3 deluxe bracelets.
1. For 3 simple bracelets and 4 deluxe bracelets:
- [tex]\( x = 3 \)[/tex]
- [tex]\( y = 4 \)[/tex]
- Calculate [tex]\(9x + 20y\)[/tex]:
[tex]\[ 9(3) + 20(4) = 27 + 80 = 107 \][/tex]
- Since [tex]\( 107 \leq 120 \)[/tex], this combination does not satisfy the inequality.
2. For 0 simple bracelets and 6 deluxe bracelets:
- [tex]\( x = 0 \)[/tex]
- [tex]\( y = 6 \)[/tex]
- Calculate [tex]\(9x + 20y\)[/tex]:
[tex]\[ 9(0) + 20(6) = 0 + 120 = 120 \][/tex]
- Since [tex]\( 120 \leq 120 \)[/tex], this combination does not satisfy the inequality.
3. For 12 simple bracelets and 0 deluxe bracelets:
- [tex]\( x = 12 \)[/tex]
- [tex]\( y = 0 \)[/tex]
- Calculate [tex]\(9x + 20y\)[/tex]:
[tex]\[ 9(12) + 20(0) = 108 + 0 = 108 \][/tex]
- Since [tex]\( 108 \leq 120 \)[/tex], this combination does not satisfy the inequality.
4. For 7 simple bracelets and 3 deluxe bracelets:
- [tex]\( x = 7 \)[/tex]
- [tex]\( y = 3 \)[/tex]
- Calculate [tex]\(9x + 20y\)[/tex]:
[tex]\[ 9(7) + 20(3) = 63 + 60 = 123 \][/tex]
- Since [tex]\( 123 > 120 \)[/tex], this combination does satisfy the inequality.
From these calculations, we can see that the possible combination of bracelets that Dimitri may have made, satisfying the inequality [tex]\(9x + 20y > 120\)[/tex], is 7 simple bracelets and 3 deluxe bracelets.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.