Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's solve the given equation step-by-step:
The given equation is:
[tex]\[ \sin^2(\theta) + \sin^2(\theta) \cdot \tan^2(\theta) = \tan^2(\theta) \][/tex]
First, let's rewrite the given equation for clarity:
[tex]\[ \sin^2(\theta) + \sin^2(\theta) \tan^2(\theta) - \tan^2(\theta) = 0 \][/tex]
Factor out the common term, [tex]\(\tan^2(\theta)\)[/tex], from the second and third terms:
[tex]\[ \sin^2(\theta) + \tan^2(\theta) (\sin^2(\theta) - 1) = 0 \][/tex]
We know that [tex]\(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\)[/tex]. Hence, [tex]\(\tan^2(\theta) = \frac{\sin^2(\theta)}{\cos^2(\theta)}\)[/tex]. So,
[tex]\[ \sin^2(\theta) + \frac{\sin^2(\theta)}{\cos^2(\theta)} (\sin^2(\theta) - 1) = 0 \][/tex]
Let's simplify this equation by multiplying every term by [tex]\(\cos^2(\theta)\)[/tex] to clear the denominator:
[tex]\[ \sin^2(\theta)\cos^2(\theta) + \sin^4(\theta) - \sin^2(\theta)\cos^2(\theta) = 0 \][/tex]
We notice that [tex]\(\sin^2(\theta)\cos^2(\theta)\)[/tex] cancels out:
[tex]\[ \sin^4(\theta) = 0 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \sin^2(\theta) = 0 \][/tex]
Taking the square root again, we find:
[tex]\[ \sin(\theta) = 0 \][/tex]
The solutions to [tex]\(\sin(\theta) = 0\)[/tex] are the angles where the sine function equals zero. These angles occur at:
[tex]\[ \theta = 0, \pm \pi, \pm 2\pi, \ldots \][/tex]
Considering only within the principal range of [tex]\([-\pi, \pi]\)[/tex], we identify:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
Thus, the complete set of solutions for [tex]\(\theta\)[/tex] for the given equation within one period are:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
Therefore, the solutions are:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
The given equation is:
[tex]\[ \sin^2(\theta) + \sin^2(\theta) \cdot \tan^2(\theta) = \tan^2(\theta) \][/tex]
First, let's rewrite the given equation for clarity:
[tex]\[ \sin^2(\theta) + \sin^2(\theta) \tan^2(\theta) - \tan^2(\theta) = 0 \][/tex]
Factor out the common term, [tex]\(\tan^2(\theta)\)[/tex], from the second and third terms:
[tex]\[ \sin^2(\theta) + \tan^2(\theta) (\sin^2(\theta) - 1) = 0 \][/tex]
We know that [tex]\(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\)[/tex]. Hence, [tex]\(\tan^2(\theta) = \frac{\sin^2(\theta)}{\cos^2(\theta)}\)[/tex]. So,
[tex]\[ \sin^2(\theta) + \frac{\sin^2(\theta)}{\cos^2(\theta)} (\sin^2(\theta) - 1) = 0 \][/tex]
Let's simplify this equation by multiplying every term by [tex]\(\cos^2(\theta)\)[/tex] to clear the denominator:
[tex]\[ \sin^2(\theta)\cos^2(\theta) + \sin^4(\theta) - \sin^2(\theta)\cos^2(\theta) = 0 \][/tex]
We notice that [tex]\(\sin^2(\theta)\cos^2(\theta)\)[/tex] cancels out:
[tex]\[ \sin^4(\theta) = 0 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \sin^2(\theta) = 0 \][/tex]
Taking the square root again, we find:
[tex]\[ \sin(\theta) = 0 \][/tex]
The solutions to [tex]\(\sin(\theta) = 0\)[/tex] are the angles where the sine function equals zero. These angles occur at:
[tex]\[ \theta = 0, \pm \pi, \pm 2\pi, \ldots \][/tex]
Considering only within the principal range of [tex]\([-\pi, \pi]\)[/tex], we identify:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
Thus, the complete set of solutions for [tex]\(\theta\)[/tex] for the given equation within one period are:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
Therefore, the solutions are:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.