Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve the given equation step-by-step:
The given equation is:
[tex]\[ \sin^2(\theta) + \sin^2(\theta) \cdot \tan^2(\theta) = \tan^2(\theta) \][/tex]
First, let's rewrite the given equation for clarity:
[tex]\[ \sin^2(\theta) + \sin^2(\theta) \tan^2(\theta) - \tan^2(\theta) = 0 \][/tex]
Factor out the common term, [tex]\(\tan^2(\theta)\)[/tex], from the second and third terms:
[tex]\[ \sin^2(\theta) + \tan^2(\theta) (\sin^2(\theta) - 1) = 0 \][/tex]
We know that [tex]\(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\)[/tex]. Hence, [tex]\(\tan^2(\theta) = \frac{\sin^2(\theta)}{\cos^2(\theta)}\)[/tex]. So,
[tex]\[ \sin^2(\theta) + \frac{\sin^2(\theta)}{\cos^2(\theta)} (\sin^2(\theta) - 1) = 0 \][/tex]
Let's simplify this equation by multiplying every term by [tex]\(\cos^2(\theta)\)[/tex] to clear the denominator:
[tex]\[ \sin^2(\theta)\cos^2(\theta) + \sin^4(\theta) - \sin^2(\theta)\cos^2(\theta) = 0 \][/tex]
We notice that [tex]\(\sin^2(\theta)\cos^2(\theta)\)[/tex] cancels out:
[tex]\[ \sin^4(\theta) = 0 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \sin^2(\theta) = 0 \][/tex]
Taking the square root again, we find:
[tex]\[ \sin(\theta) = 0 \][/tex]
The solutions to [tex]\(\sin(\theta) = 0\)[/tex] are the angles where the sine function equals zero. These angles occur at:
[tex]\[ \theta = 0, \pm \pi, \pm 2\pi, \ldots \][/tex]
Considering only within the principal range of [tex]\([-\pi, \pi]\)[/tex], we identify:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
Thus, the complete set of solutions for [tex]\(\theta\)[/tex] for the given equation within one period are:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
Therefore, the solutions are:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
The given equation is:
[tex]\[ \sin^2(\theta) + \sin^2(\theta) \cdot \tan^2(\theta) = \tan^2(\theta) \][/tex]
First, let's rewrite the given equation for clarity:
[tex]\[ \sin^2(\theta) + \sin^2(\theta) \tan^2(\theta) - \tan^2(\theta) = 0 \][/tex]
Factor out the common term, [tex]\(\tan^2(\theta)\)[/tex], from the second and third terms:
[tex]\[ \sin^2(\theta) + \tan^2(\theta) (\sin^2(\theta) - 1) = 0 \][/tex]
We know that [tex]\(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\)[/tex]. Hence, [tex]\(\tan^2(\theta) = \frac{\sin^2(\theta)}{\cos^2(\theta)}\)[/tex]. So,
[tex]\[ \sin^2(\theta) + \frac{\sin^2(\theta)}{\cos^2(\theta)} (\sin^2(\theta) - 1) = 0 \][/tex]
Let's simplify this equation by multiplying every term by [tex]\(\cos^2(\theta)\)[/tex] to clear the denominator:
[tex]\[ \sin^2(\theta)\cos^2(\theta) + \sin^4(\theta) - \sin^2(\theta)\cos^2(\theta) = 0 \][/tex]
We notice that [tex]\(\sin^2(\theta)\cos^2(\theta)\)[/tex] cancels out:
[tex]\[ \sin^4(\theta) = 0 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ \sin^2(\theta) = 0 \][/tex]
Taking the square root again, we find:
[tex]\[ \sin(\theta) = 0 \][/tex]
The solutions to [tex]\(\sin(\theta) = 0\)[/tex] are the angles where the sine function equals zero. These angles occur at:
[tex]\[ \theta = 0, \pm \pi, \pm 2\pi, \ldots \][/tex]
Considering only within the principal range of [tex]\([-\pi, \pi]\)[/tex], we identify:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
Thus, the complete set of solutions for [tex]\(\theta\)[/tex] for the given equation within one period are:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
Therefore, the solutions are:
[tex]\[ \theta = 0, -\pi, \pi, 2\pi \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.