Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Para resolver el problema de encontrar los puntos críticos de la función [tex]\( y = x^3 + 2x^2 - 4x + 1 \)[/tex], debemos seguir estos pasos:
### Paso 1: Hallar la derivada primera de la función
Para encontrar los puntos críticos, primero necesitamos calcular la derivada primera de la función [tex]\( y \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(x^3 + 2x^2 - 4x + 1) \][/tex]
Aplicando las reglas de derivación, tenemos:
[tex]\[ \frac{dy}{dx} = 3x^2 + 4x - 4 \][/tex]
### Paso 2: Encontrar los puntos críticos
Los puntos críticos se hallan resolviendo la ecuación cuando la derivada primera es igual a cero:
[tex]\[ 3x^2 + 4x - 4 = 0 \][/tex]
### Paso 3: Resolver la ecuación cuadrática
Esta es una ecuación cuadrática en forma estándar [tex]\( ax^2 + bx + c = 0 \)[/tex]. Podemos usar la fórmula general para resolverla:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = -4 \)[/tex]
Sustituyendo estos valores en la fórmula general, obtenemos:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4(3)(-4)}}{2(3)} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{16 + 48}}{6} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{64}}{6} \][/tex]
[tex]\[ x = \frac{-4 \pm 8}{6} \][/tex]
Esto produce dos soluciones:
[tex]\[ x_1 = \frac{-4 + 8}{6} = \frac{4}{6} = \frac{2}{3} \][/tex]
[tex]\[ x_2 = \frac{-4 - 8}{6} = \frac{-12}{6} = -2 \][/tex]
Por lo tanto, los puntos críticos se encuentran en [tex]\( x = \frac{2}{3} \)[/tex] y [tex]\( x = -2 \)[/tex].
### Paso 4: Evaluar la función en los puntos críticos
Finalmente, debemos calcular el valor de la función [tex]\( y \)[/tex] en cada uno de los puntos críticos.
Para [tex]\( x = \frac{2}{3} \)[/tex]:
[tex]\[ y \left( \frac{2}{3} \right) = \left( \frac{2}{3} \right)^3 + 2 \left( \frac{2}{3} \right)^2 - 4 \left( \frac{2}{3} \right) + 1 \][/tex]
[tex]\[ = \frac{8}{27} + 2 \left( \frac{4}{9} \right) - \frac{8}{3} + 1 \][/tex]
[tex]\[ = \frac{8}{27} + \frac{8}{9} - \frac{72}{27} + 1 \][/tex]
[tex]\[ = \frac{8 + 24 - 72}{27} + 1 \][/tex]
[tex]\[ = \frac{-40}{27} + 1 \][/tex]
[tex]\[ = \frac{-40}{27} + \frac{27}{27} \][/tex]
[tex]\[ = \frac{-13}{27} \][/tex]
Para [tex]\( x = -2 \)[/tex]:
[tex]\[ y(-2) = (-2)^3 + 2(-2)^2 - 4(-2) + 1 \][/tex]
[tex]\[ = -8 + 8 + 8 + 1 \][/tex]
[tex]\[ = 9 \][/tex]
### Resumen
Los puntos críticos de la función [tex]\( y = x^3 + 2x^2 - 4x + 1 \)[/tex] son los siguientes:
- En [tex]\( x = -2 \)[/tex], el valor correspondiente de [tex]\( y \)[/tex] es 9.
- En [tex]\( x = \frac{2}{3} \)[/tex], el valor correspondiente de [tex]\( y \)[/tex] es [tex]\( \frac{-13}{27} \)[/tex].
### Paso 1: Hallar la derivada primera de la función
Para encontrar los puntos críticos, primero necesitamos calcular la derivada primera de la función [tex]\( y \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(x^3 + 2x^2 - 4x + 1) \][/tex]
Aplicando las reglas de derivación, tenemos:
[tex]\[ \frac{dy}{dx} = 3x^2 + 4x - 4 \][/tex]
### Paso 2: Encontrar los puntos críticos
Los puntos críticos se hallan resolviendo la ecuación cuando la derivada primera es igual a cero:
[tex]\[ 3x^2 + 4x - 4 = 0 \][/tex]
### Paso 3: Resolver la ecuación cuadrática
Esta es una ecuación cuadrática en forma estándar [tex]\( ax^2 + bx + c = 0 \)[/tex]. Podemos usar la fórmula general para resolverla:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
- [tex]\( a = 3 \)[/tex]
- [tex]\( b = 4 \)[/tex]
- [tex]\( c = -4 \)[/tex]
Sustituyendo estos valores en la fórmula general, obtenemos:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4(3)(-4)}}{2(3)} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{16 + 48}}{6} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{64}}{6} \][/tex]
[tex]\[ x = \frac{-4 \pm 8}{6} \][/tex]
Esto produce dos soluciones:
[tex]\[ x_1 = \frac{-4 + 8}{6} = \frac{4}{6} = \frac{2}{3} \][/tex]
[tex]\[ x_2 = \frac{-4 - 8}{6} = \frac{-12}{6} = -2 \][/tex]
Por lo tanto, los puntos críticos se encuentran en [tex]\( x = \frac{2}{3} \)[/tex] y [tex]\( x = -2 \)[/tex].
### Paso 4: Evaluar la función en los puntos críticos
Finalmente, debemos calcular el valor de la función [tex]\( y \)[/tex] en cada uno de los puntos críticos.
Para [tex]\( x = \frac{2}{3} \)[/tex]:
[tex]\[ y \left( \frac{2}{3} \right) = \left( \frac{2}{3} \right)^3 + 2 \left( \frac{2}{3} \right)^2 - 4 \left( \frac{2}{3} \right) + 1 \][/tex]
[tex]\[ = \frac{8}{27} + 2 \left( \frac{4}{9} \right) - \frac{8}{3} + 1 \][/tex]
[tex]\[ = \frac{8}{27} + \frac{8}{9} - \frac{72}{27} + 1 \][/tex]
[tex]\[ = \frac{8 + 24 - 72}{27} + 1 \][/tex]
[tex]\[ = \frac{-40}{27} + 1 \][/tex]
[tex]\[ = \frac{-40}{27} + \frac{27}{27} \][/tex]
[tex]\[ = \frac{-13}{27} \][/tex]
Para [tex]\( x = -2 \)[/tex]:
[tex]\[ y(-2) = (-2)^3 + 2(-2)^2 - 4(-2) + 1 \][/tex]
[tex]\[ = -8 + 8 + 8 + 1 \][/tex]
[tex]\[ = 9 \][/tex]
### Resumen
Los puntos críticos de la función [tex]\( y = x^3 + 2x^2 - 4x + 1 \)[/tex] son los siguientes:
- En [tex]\( x = -2 \)[/tex], el valor correspondiente de [tex]\( y \)[/tex] es 9.
- En [tex]\( x = \frac{2}{3} \)[/tex], el valor correspondiente de [tex]\( y \)[/tex] es [tex]\( \frac{-13}{27} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.