Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let’s solve this problem step by step:
Step 1: Determine the initial potential energy stored in the spring.
The potential energy stored in a compressed or stretched spring is given by the formula:
[tex]\[ PE_{\text{spring}} = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( k \)[/tex] is the spring constant (2000 N/m)
- [tex]\( x \)[/tex] is the compression distance (0.20 m)
So,
[tex]\[ PE_{\text{spring}} = \frac{1}{2} \times 2000 \, \text{N/m} \times (0.20 \, \text{m})^2 \][/tex]
[tex]\[ PE_{\text{spring}} = 0.5 \times 2000 \times 0.04 \][/tex]
[tex]\[ PE_{\text{spring}} = 40 \, \text{J} \][/tex]
Thus, the initial potential energy in the spring is 40.00000000000001 J.
Step 2: Calculate the friction force acting on the block.
The friction force can be calculated using the formula:
[tex]\[ F_{\text{friction}} = \mu \times m \times g \][/tex]
where:
- [tex]\( \mu \)[/tex] is the coefficient of kinetic friction (0.4)
- [tex]\( m \)[/tex] is the mass of the block (3.00 kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.81 m/s[tex]\(^2\)[/tex])
So,
[tex]\[ F_{\text{friction}} = 0.4 \times 3.00 \, \text{kg} \times 9.81 \, \text{m/s}^2 \][/tex]
[tex]\[ F_{\text{friction}} = 0.4 \times 3.00 \times 9.81 \][/tex]
[tex]\[ F_{\text{friction}} = 0.4 \times 29.43 \][/tex]
[tex]\[ F_{\text{friction}} = 11.772 \, \text{N} \][/tex]
The friction force acting on the block is 11.772000000000002 N.
Step 3: Use the work-energy principle to find the distance the block slides.
According to the work-energy principle, the work done by the friction force is equal to the initial potential energy stored in the spring:
[tex]\[ \text{Work}_{\text{friction}} = F_{\text{friction}} \times \text{distance} \][/tex]
[tex]\[ PE_{\text{spring}} = F_{\text{friction}} \times \text{distance} \][/tex]
So,
[tex]\[ \text{distance} = \frac{PE_{\text{spring}}}{F_{\text{friction}}} \][/tex]
[tex]\[ \text{distance} = \frac{40.00000000000001 \, \text{J}}{11.772000000000002 \, \text{N}} \][/tex]
[tex]\[ \text{distance} \approx 3.40 \, \text{m} \][/tex]
Thus, the block slides a distance of approximately 3.397893306150187 meters before coming to rest.
Step 1: Determine the initial potential energy stored in the spring.
The potential energy stored in a compressed or stretched spring is given by the formula:
[tex]\[ PE_{\text{spring}} = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( k \)[/tex] is the spring constant (2000 N/m)
- [tex]\( x \)[/tex] is the compression distance (0.20 m)
So,
[tex]\[ PE_{\text{spring}} = \frac{1}{2} \times 2000 \, \text{N/m} \times (0.20 \, \text{m})^2 \][/tex]
[tex]\[ PE_{\text{spring}} = 0.5 \times 2000 \times 0.04 \][/tex]
[tex]\[ PE_{\text{spring}} = 40 \, \text{J} \][/tex]
Thus, the initial potential energy in the spring is 40.00000000000001 J.
Step 2: Calculate the friction force acting on the block.
The friction force can be calculated using the formula:
[tex]\[ F_{\text{friction}} = \mu \times m \times g \][/tex]
where:
- [tex]\( \mu \)[/tex] is the coefficient of kinetic friction (0.4)
- [tex]\( m \)[/tex] is the mass of the block (3.00 kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.81 m/s[tex]\(^2\)[/tex])
So,
[tex]\[ F_{\text{friction}} = 0.4 \times 3.00 \, \text{kg} \times 9.81 \, \text{m/s}^2 \][/tex]
[tex]\[ F_{\text{friction}} = 0.4 \times 3.00 \times 9.81 \][/tex]
[tex]\[ F_{\text{friction}} = 0.4 \times 29.43 \][/tex]
[tex]\[ F_{\text{friction}} = 11.772 \, \text{N} \][/tex]
The friction force acting on the block is 11.772000000000002 N.
Step 3: Use the work-energy principle to find the distance the block slides.
According to the work-energy principle, the work done by the friction force is equal to the initial potential energy stored in the spring:
[tex]\[ \text{Work}_{\text{friction}} = F_{\text{friction}} \times \text{distance} \][/tex]
[tex]\[ PE_{\text{spring}} = F_{\text{friction}} \times \text{distance} \][/tex]
So,
[tex]\[ \text{distance} = \frac{PE_{\text{spring}}}{F_{\text{friction}}} \][/tex]
[tex]\[ \text{distance} = \frac{40.00000000000001 \, \text{J}}{11.772000000000002 \, \text{N}} \][/tex]
[tex]\[ \text{distance} \approx 3.40 \, \text{m} \][/tex]
Thus, the block slides a distance of approximately 3.397893306150187 meters before coming to rest.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.