Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let’s solve this problem step by step:
Step 1: Determine the initial potential energy stored in the spring.
The potential energy stored in a compressed or stretched spring is given by the formula:
[tex]\[ PE_{\text{spring}} = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( k \)[/tex] is the spring constant (2000 N/m)
- [tex]\( x \)[/tex] is the compression distance (0.20 m)
So,
[tex]\[ PE_{\text{spring}} = \frac{1}{2} \times 2000 \, \text{N/m} \times (0.20 \, \text{m})^2 \][/tex]
[tex]\[ PE_{\text{spring}} = 0.5 \times 2000 \times 0.04 \][/tex]
[tex]\[ PE_{\text{spring}} = 40 \, \text{J} \][/tex]
Thus, the initial potential energy in the spring is 40.00000000000001 J.
Step 2: Calculate the friction force acting on the block.
The friction force can be calculated using the formula:
[tex]\[ F_{\text{friction}} = \mu \times m \times g \][/tex]
where:
- [tex]\( \mu \)[/tex] is the coefficient of kinetic friction (0.4)
- [tex]\( m \)[/tex] is the mass of the block (3.00 kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.81 m/s[tex]\(^2\)[/tex])
So,
[tex]\[ F_{\text{friction}} = 0.4 \times 3.00 \, \text{kg} \times 9.81 \, \text{m/s}^2 \][/tex]
[tex]\[ F_{\text{friction}} = 0.4 \times 3.00 \times 9.81 \][/tex]
[tex]\[ F_{\text{friction}} = 0.4 \times 29.43 \][/tex]
[tex]\[ F_{\text{friction}} = 11.772 \, \text{N} \][/tex]
The friction force acting on the block is 11.772000000000002 N.
Step 3: Use the work-energy principle to find the distance the block slides.
According to the work-energy principle, the work done by the friction force is equal to the initial potential energy stored in the spring:
[tex]\[ \text{Work}_{\text{friction}} = F_{\text{friction}} \times \text{distance} \][/tex]
[tex]\[ PE_{\text{spring}} = F_{\text{friction}} \times \text{distance} \][/tex]
So,
[tex]\[ \text{distance} = \frac{PE_{\text{spring}}}{F_{\text{friction}}} \][/tex]
[tex]\[ \text{distance} = \frac{40.00000000000001 \, \text{J}}{11.772000000000002 \, \text{N}} \][/tex]
[tex]\[ \text{distance} \approx 3.40 \, \text{m} \][/tex]
Thus, the block slides a distance of approximately 3.397893306150187 meters before coming to rest.
Step 1: Determine the initial potential energy stored in the spring.
The potential energy stored in a compressed or stretched spring is given by the formula:
[tex]\[ PE_{\text{spring}} = \frac{1}{2} k x^2 \][/tex]
where:
- [tex]\( k \)[/tex] is the spring constant (2000 N/m)
- [tex]\( x \)[/tex] is the compression distance (0.20 m)
So,
[tex]\[ PE_{\text{spring}} = \frac{1}{2} \times 2000 \, \text{N/m} \times (0.20 \, \text{m})^2 \][/tex]
[tex]\[ PE_{\text{spring}} = 0.5 \times 2000 \times 0.04 \][/tex]
[tex]\[ PE_{\text{spring}} = 40 \, \text{J} \][/tex]
Thus, the initial potential energy in the spring is 40.00000000000001 J.
Step 2: Calculate the friction force acting on the block.
The friction force can be calculated using the formula:
[tex]\[ F_{\text{friction}} = \mu \times m \times g \][/tex]
where:
- [tex]\( \mu \)[/tex] is the coefficient of kinetic friction (0.4)
- [tex]\( m \)[/tex] is the mass of the block (3.00 kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.81 m/s[tex]\(^2\)[/tex])
So,
[tex]\[ F_{\text{friction}} = 0.4 \times 3.00 \, \text{kg} \times 9.81 \, \text{m/s}^2 \][/tex]
[tex]\[ F_{\text{friction}} = 0.4 \times 3.00 \times 9.81 \][/tex]
[tex]\[ F_{\text{friction}} = 0.4 \times 29.43 \][/tex]
[tex]\[ F_{\text{friction}} = 11.772 \, \text{N} \][/tex]
The friction force acting on the block is 11.772000000000002 N.
Step 3: Use the work-energy principle to find the distance the block slides.
According to the work-energy principle, the work done by the friction force is equal to the initial potential energy stored in the spring:
[tex]\[ \text{Work}_{\text{friction}} = F_{\text{friction}} \times \text{distance} \][/tex]
[tex]\[ PE_{\text{spring}} = F_{\text{friction}} \times \text{distance} \][/tex]
So,
[tex]\[ \text{distance} = \frac{PE_{\text{spring}}}{F_{\text{friction}}} \][/tex]
[tex]\[ \text{distance} = \frac{40.00000000000001 \, \text{J}}{11.772000000000002 \, \text{N}} \][/tex]
[tex]\[ \text{distance} \approx 3.40 \, \text{m} \][/tex]
Thus, the block slides a distance of approximately 3.397893306150187 meters before coming to rest.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.