At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To model the cost of renting roller skates based on the given time intervals, we need to define a piecewise function [tex]\( c(t) \)[/tex] where [tex]\( t \)[/tex] is the rental time in hours, and [tex]\( c(t) \)[/tex] is the cost in dollars. We'll break down the intervals step by step as per the given cost structure:
1. If [tex]\( 0 < t \leq 1 \)[/tex]:
For any time [tex]\( t \)[/tex] between 0 and 1 hour, the cost [tex]\( c(t) \)[/tex] is [tex]\( \$5 \)[/tex].
2. If [tex]\( 1 < t \leq 2 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 1 hour and up to 2 hours, the cost [tex]\( c(t) \)[/tex] increases to [tex]\( \$10 \)[/tex].
3. If [tex]\( 2 < t \leq 5 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 2 hours and up to 5 hours, the cost [tex]\( c(t) \)[/tex] further increases to [tex]\( \$20 \)[/tex].
4. If [tex]\( 5 < t \leq 8 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 5 hours and up to 8 hours, the cost [tex]\( c(t) \)[/tex] is [tex]\( \$25 \)[/tex].
For [tex]\( t \)[/tex] values beyond 8 hours, we assume the rental time exceeds the defined limits, so the cost function does not cover these values.
Given this structure, the piecewise function [tex]\( c(t) \)[/tex] can be written as:
[tex]\[ c(t) = \begin{cases} 5 & \text{if } 0 < t \leq 1 \\ 10 & \text{if } 1 < t \leq 2 \\ 20 & \text{if } 2 < t \leq 5 \\ 25 & \text{if } 5 < t \leq 8 \\ \text{Time exceeds limits} & \text{if } t > 8 \end{cases} \][/tex]
This function reflects the cost structure provided by the skate shop. Each interval corresponds to a specific rental cost, ensuring the model accurately represents the rental pricing for up to 8 hours within a single day. The function also indicates that any rental time beyond 8 hours would exceed the stipulated rental periods provided.
1. If [tex]\( 0 < t \leq 1 \)[/tex]:
For any time [tex]\( t \)[/tex] between 0 and 1 hour, the cost [tex]\( c(t) \)[/tex] is [tex]\( \$5 \)[/tex].
2. If [tex]\( 1 < t \leq 2 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 1 hour and up to 2 hours, the cost [tex]\( c(t) \)[/tex] increases to [tex]\( \$10 \)[/tex].
3. If [tex]\( 2 < t \leq 5 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 2 hours and up to 5 hours, the cost [tex]\( c(t) \)[/tex] further increases to [tex]\( \$20 \)[/tex].
4. If [tex]\( 5 < t \leq 8 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 5 hours and up to 8 hours, the cost [tex]\( c(t) \)[/tex] is [tex]\( \$25 \)[/tex].
For [tex]\( t \)[/tex] values beyond 8 hours, we assume the rental time exceeds the defined limits, so the cost function does not cover these values.
Given this structure, the piecewise function [tex]\( c(t) \)[/tex] can be written as:
[tex]\[ c(t) = \begin{cases} 5 & \text{if } 0 < t \leq 1 \\ 10 & \text{if } 1 < t \leq 2 \\ 20 & \text{if } 2 < t \leq 5 \\ 25 & \text{if } 5 < t \leq 8 \\ \text{Time exceeds limits} & \text{if } t > 8 \end{cases} \][/tex]
This function reflects the cost structure provided by the skate shop. Each interval corresponds to a specific rental cost, ensuring the model accurately represents the rental pricing for up to 8 hours within a single day. The function also indicates that any rental time beyond 8 hours would exceed the stipulated rental periods provided.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.