Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To model the cost of renting roller skates based on the given time intervals, we need to define a piecewise function [tex]\( c(t) \)[/tex] where [tex]\( t \)[/tex] is the rental time in hours, and [tex]\( c(t) \)[/tex] is the cost in dollars. We'll break down the intervals step by step as per the given cost structure:
1. If [tex]\( 0 < t \leq 1 \)[/tex]:
For any time [tex]\( t \)[/tex] between 0 and 1 hour, the cost [tex]\( c(t) \)[/tex] is [tex]\( \$5 \)[/tex].
2. If [tex]\( 1 < t \leq 2 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 1 hour and up to 2 hours, the cost [tex]\( c(t) \)[/tex] increases to [tex]\( \$10 \)[/tex].
3. If [tex]\( 2 < t \leq 5 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 2 hours and up to 5 hours, the cost [tex]\( c(t) \)[/tex] further increases to [tex]\( \$20 \)[/tex].
4. If [tex]\( 5 < t \leq 8 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 5 hours and up to 8 hours, the cost [tex]\( c(t) \)[/tex] is [tex]\( \$25 \)[/tex].
For [tex]\( t \)[/tex] values beyond 8 hours, we assume the rental time exceeds the defined limits, so the cost function does not cover these values.
Given this structure, the piecewise function [tex]\( c(t) \)[/tex] can be written as:
[tex]\[ c(t) = \begin{cases} 5 & \text{if } 0 < t \leq 1 \\ 10 & \text{if } 1 < t \leq 2 \\ 20 & \text{if } 2 < t \leq 5 \\ 25 & \text{if } 5 < t \leq 8 \\ \text{Time exceeds limits} & \text{if } t > 8 \end{cases} \][/tex]
This function reflects the cost structure provided by the skate shop. Each interval corresponds to a specific rental cost, ensuring the model accurately represents the rental pricing for up to 8 hours within a single day. The function also indicates that any rental time beyond 8 hours would exceed the stipulated rental periods provided.
1. If [tex]\( 0 < t \leq 1 \)[/tex]:
For any time [tex]\( t \)[/tex] between 0 and 1 hour, the cost [tex]\( c(t) \)[/tex] is [tex]\( \$5 \)[/tex].
2. If [tex]\( 1 < t \leq 2 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 1 hour and up to 2 hours, the cost [tex]\( c(t) \)[/tex] increases to [tex]\( \$10 \)[/tex].
3. If [tex]\( 2 < t \leq 5 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 2 hours and up to 5 hours, the cost [tex]\( c(t) \)[/tex] further increases to [tex]\( \$20 \)[/tex].
4. If [tex]\( 5 < t \leq 8 \)[/tex]:
For any time [tex]\( t \)[/tex] between more than 5 hours and up to 8 hours, the cost [tex]\( c(t) \)[/tex] is [tex]\( \$25 \)[/tex].
For [tex]\( t \)[/tex] values beyond 8 hours, we assume the rental time exceeds the defined limits, so the cost function does not cover these values.
Given this structure, the piecewise function [tex]\( c(t) \)[/tex] can be written as:
[tex]\[ c(t) = \begin{cases} 5 & \text{if } 0 < t \leq 1 \\ 10 & \text{if } 1 < t \leq 2 \\ 20 & \text{if } 2 < t \leq 5 \\ 25 & \text{if } 5 < t \leq 8 \\ \text{Time exceeds limits} & \text{if } t > 8 \end{cases} \][/tex]
This function reflects the cost structure provided by the skate shop. Each interval corresponds to a specific rental cost, ensuring the model accurately represents the rental pricing for up to 8 hours within a single day. The function also indicates that any rental time beyond 8 hours would exceed the stipulated rental periods provided.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.