Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the domain of the function [tex]\( y = \sec(x) \)[/tex], we first need to understand the properties of the secant function. The secant function is defined as the reciprocal of the cosine function:
[tex]\[ \sec(x) = \frac{1}{\cos(x)} \][/tex]
For [tex]\(\sec(x)\)[/tex] to be defined, [tex]\(\cos(x)\)[/tex] must be non-zero since division by zero is undefined. Therefore, we need to find the values of [tex]\(x\)[/tex] for which [tex]\(\cos(x) = 0\)[/tex] and exclude these from the domain.
The cosine function [tex]\(\cos(x)\)[/tex] is zero at the following values:
[tex]\[ x = \frac{\pi}{2} + n\pi \quad \text{where} \quad n \text{ is any integer} \][/tex]
These are the points where the cosine function crosses the x-axis, which corresponds to [tex]\(90^\circ, 270^\circ,\)[/tex] and so on for all integers [tex]\(n\)[/tex].
Therefore, the secant function [tex]\(\sec(x)\)[/tex] will be undefined at:
[tex]\[ x = n\pi + \frac{\pi}{2} \quad \text{where} \quad n \text{is any integer} \][/tex]
Because [tex]\(\sec(x)\)[/tex] is defined for all other values of [tex]\(x\)[/tex], we conclude that the domain of [tex]\( y = \sec(x) \)[/tex] is all real numbers [tex]\(x\)[/tex] except those on the form [tex]\( n\pi + \frac{\pi}{2} \)[/tex], where [tex]\( n \)[/tex] is any integer.
Hence, the detailed description of the domain of [tex]\(y = \sec(x)\)[/tex] is:
[tex]\[ \text{all real numbers except } n \pi + \frac{\pi}{2}, \text{ where } n \text{ is any integer} \][/tex]
[tex]\[ \sec(x) = \frac{1}{\cos(x)} \][/tex]
For [tex]\(\sec(x)\)[/tex] to be defined, [tex]\(\cos(x)\)[/tex] must be non-zero since division by zero is undefined. Therefore, we need to find the values of [tex]\(x\)[/tex] for which [tex]\(\cos(x) = 0\)[/tex] and exclude these from the domain.
The cosine function [tex]\(\cos(x)\)[/tex] is zero at the following values:
[tex]\[ x = \frac{\pi}{2} + n\pi \quad \text{where} \quad n \text{ is any integer} \][/tex]
These are the points where the cosine function crosses the x-axis, which corresponds to [tex]\(90^\circ, 270^\circ,\)[/tex] and so on for all integers [tex]\(n\)[/tex].
Therefore, the secant function [tex]\(\sec(x)\)[/tex] will be undefined at:
[tex]\[ x = n\pi + \frac{\pi}{2} \quad \text{where} \quad n \text{is any integer} \][/tex]
Because [tex]\(\sec(x)\)[/tex] is defined for all other values of [tex]\(x\)[/tex], we conclude that the domain of [tex]\( y = \sec(x) \)[/tex] is all real numbers [tex]\(x\)[/tex] except those on the form [tex]\( n\pi + \frac{\pi}{2} \)[/tex], where [tex]\( n \)[/tex] is any integer.
Hence, the detailed description of the domain of [tex]\(y = \sec(x)\)[/tex] is:
[tex]\[ \text{all real numbers except } n \pi + \frac{\pi}{2}, \text{ where } n \text{ is any integer} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.