Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step to determine how many zeroes the polynomial [tex]\((x-3)^2 - 4\)[/tex] has and find what those zeroes are.
### Step 1: Write the Polynomial in Standard Form
First, we start with the given polynomial:
[tex]\[ (x-3)^2 - 4 \][/tex]
### Step 2: Simplify the Polynomial
Expand the expression:
[tex]\[ (x-3)^2 - 4 = (x-3)(x-3) - 4 \][/tex]
[tex]\[ = x^2 - 6x + 9 - 4 \][/tex]
[tex]\[ = x^2 - 6x + 5 \][/tex]
### Step 3: Set the Polynomial Equal to Zero
To find the zeroes, we need to solve:
[tex]\[ x^2 - 6x + 5 = 0 \][/tex]
### Step 4: Solve the Quadratic Equation
We can factorize the quadratic equation:
[tex]\[ x^2 - 6x + 5 = (x-1)(x-5) = 0 \][/tex]
### Step 5: Set Each Factor to Zero and Solve for x
Solving for [tex]\(x\)[/tex] from each factor:
[tex]\[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \][/tex]
[tex]\[ x - 5 = 0 \quad \Rightarrow \quad x = 5 \][/tex]
### Step 6: Conclusion
Thus, the polynomial [tex]\((x-3)^2 - 4\)[/tex] has 2 zeroes, and they are:
[tex]\[ x = 1 \quad \text{and} \quad x = 5 \][/tex]
Therefore, the polynomial [tex]\((x-3)^2 - 4\)[/tex] has two zeroes, which are [tex]\(1\)[/tex] and [tex]\(5\)[/tex].
### Step 1: Write the Polynomial in Standard Form
First, we start with the given polynomial:
[tex]\[ (x-3)^2 - 4 \][/tex]
### Step 2: Simplify the Polynomial
Expand the expression:
[tex]\[ (x-3)^2 - 4 = (x-3)(x-3) - 4 \][/tex]
[tex]\[ = x^2 - 6x + 9 - 4 \][/tex]
[tex]\[ = x^2 - 6x + 5 \][/tex]
### Step 3: Set the Polynomial Equal to Zero
To find the zeroes, we need to solve:
[tex]\[ x^2 - 6x + 5 = 0 \][/tex]
### Step 4: Solve the Quadratic Equation
We can factorize the quadratic equation:
[tex]\[ x^2 - 6x + 5 = (x-1)(x-5) = 0 \][/tex]
### Step 5: Set Each Factor to Zero and Solve for x
Solving for [tex]\(x\)[/tex] from each factor:
[tex]\[ x - 1 = 0 \quad \Rightarrow \quad x = 1 \][/tex]
[tex]\[ x - 5 = 0 \quad \Rightarrow \quad x = 5 \][/tex]
### Step 6: Conclusion
Thus, the polynomial [tex]\((x-3)^2 - 4\)[/tex] has 2 zeroes, and they are:
[tex]\[ x = 1 \quad \text{and} \quad x = 5 \][/tex]
Therefore, the polynomial [tex]\((x-3)^2 - 4\)[/tex] has two zeroes, which are [tex]\(1\)[/tex] and [tex]\(5\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.