At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve part (b) of the problem, we need to find the average rate of change for the distance driven from 5 seconds to 9 seconds.
Step 1: Identify the given data points for time and distance.
- At [tex]\( t = 5 \)[/tex] seconds, the distance [tex]\( D(t) = 151.5 \)[/tex] meters.
- At [tex]\( t = 9 \)[/tex] seconds, the distance [tex]\( D(t) = 255.9 \)[/tex] meters.
Step 2: Use the formula for average rate of change. The average rate of change of a function [tex]\( D(t) \)[/tex] over an interval from [tex]\( t = a \)[/tex] to [tex]\( t = b \)[/tex] is given by:
[tex]\[ \text{Average Rate of Change} = \frac{D(b) - D(a)}{b - a} \][/tex]
In this problem, [tex]\( a = 5 \)[/tex] and [tex]\( b = 9 \)[/tex].
Step 3: Substitute the given values into the formula.
[tex]\[ \text{Average Rate of Change} = \frac{D(9) - D(5)}{9 - 5} = \frac{255.9 \text{ meters} - 151.5 \text{ meters}}{9 \text{ seconds} - 5 \text{ seconds}} \][/tex]
Step 4: Calculate the differences.
[tex]\[ \text{Distance Difference} = 255.9 \text{ meters} - 151.5 \text{ meters} = 104.4 \text{ meters} \][/tex]
[tex]\[ \text{Time Difference} = 9 \text{ seconds} - 5 \text{ seconds} = 4 \text{ seconds} \][/tex]
Step 5: Compute the average rate of change.
[tex]\[ \text{Average Rate of Change} = \frac{104.4 \text{ meters}}{4 \text{ seconds}} = 26.1 \text{ meters per second} \][/tex]
Thus, the average rate of change for the distance driven from 5 seconds to 9 seconds is [tex]\(\boxed{26.1}\)[/tex] meters per second.
Step 1: Identify the given data points for time and distance.
- At [tex]\( t = 5 \)[/tex] seconds, the distance [tex]\( D(t) = 151.5 \)[/tex] meters.
- At [tex]\( t = 9 \)[/tex] seconds, the distance [tex]\( D(t) = 255.9 \)[/tex] meters.
Step 2: Use the formula for average rate of change. The average rate of change of a function [tex]\( D(t) \)[/tex] over an interval from [tex]\( t = a \)[/tex] to [tex]\( t = b \)[/tex] is given by:
[tex]\[ \text{Average Rate of Change} = \frac{D(b) - D(a)}{b - a} \][/tex]
In this problem, [tex]\( a = 5 \)[/tex] and [tex]\( b = 9 \)[/tex].
Step 3: Substitute the given values into the formula.
[tex]\[ \text{Average Rate of Change} = \frac{D(9) - D(5)}{9 - 5} = \frac{255.9 \text{ meters} - 151.5 \text{ meters}}{9 \text{ seconds} - 5 \text{ seconds}} \][/tex]
Step 4: Calculate the differences.
[tex]\[ \text{Distance Difference} = 255.9 \text{ meters} - 151.5 \text{ meters} = 104.4 \text{ meters} \][/tex]
[tex]\[ \text{Time Difference} = 9 \text{ seconds} - 5 \text{ seconds} = 4 \text{ seconds} \][/tex]
Step 5: Compute the average rate of change.
[tex]\[ \text{Average Rate of Change} = \frac{104.4 \text{ meters}}{4 \text{ seconds}} = 26.1 \text{ meters per second} \][/tex]
Thus, the average rate of change for the distance driven from 5 seconds to 9 seconds is [tex]\(\boxed{26.1}\)[/tex] meters per second.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.