Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's tackle the differentiation of the given functions step by step.
### Problem 3.3: Differentiate from first principles if [tex]\( f(x)=\sqrt[4]{x^6} \)[/tex]
First, we need to simplify the function [tex]\( f(x) = \sqrt[4]{x^6} \)[/tex].
Rewriting the function in exponential form:
[tex]\[ f(x) = x^{6/4} \][/tex]
[tex]\[ f(x) = x^{3/2} \][/tex]
Now we differentiate [tex]\( f(x) = x^{3/2} \)[/tex]:
1. Recall the power rule for differentiation, which states that if [tex]\( f(x) = x^n \)[/tex] where [tex]\( n \)[/tex] is any real number, then [tex]\( f'(x) = nx^{n-1} \)[/tex].
2. For our function [tex]\( f(x) = x^{3/2} \)[/tex]:
[tex]\[ f'(x) = \frac{3}{2} x^{\frac{3}{2} - 1} \][/tex]
3. Simplify the exponent:
[tex]\[ f'(x) = \frac{3}{2} x^{\frac{1}{2}} \][/tex]
4. Rewrite the simplified answer:
[tex]\[ f'(x) = 1.5 x^{0.5} \][/tex]
Thus, the derivative of [tex]\( f(x) = x^{3/2} \)[/tex] is:
[tex]\[ f'(x) = 1.5 x^{0.5} \][/tex]
### Problem 3.4: Differentiate from first principles if [tex]\( f(x) = \frac{2}{x^4} \)[/tex]
First, we need to rewrite the function [tex]\( f(x) \)[/tex] in a form that makes differentiation easier.
Rewriting [tex]\( f(x) = \frac{2}{x^4} \)[/tex] as [tex]\( f(x) = 2x^{-4} \)[/tex]:
Now we differentiate [tex]\( f(x) = 2x^{-4} \)[/tex]:
1. Recall the power rule for differentiation: [tex]\( f(x) = x^n \)[/tex] implies [tex]\( f'(x) = nx^{n-1} \)[/tex].
2. For our function [tex]\( f(x) = 2x^{-4} \)[/tex]:
[tex]\[ f'(x) = 2 \cdot (-4) x^{-4 - 1} \][/tex]
3. Simplify the expression:
[tex]\[ f'(x) = -8 x^{-5} \][/tex]
4. Rewrite the simplified answer in a fraction form:
[tex]\[ f'(x) = -\frac{8}{x^5} \][/tex]
Thus, the derivative of [tex]\( f(x) = 2x^{-4} \)[/tex] is:
[tex]\[ f'(x) = -\frac{8}{x^5} \][/tex]
### Problem 3.3: Differentiate from first principles if [tex]\( f(x)=\sqrt[4]{x^6} \)[/tex]
First, we need to simplify the function [tex]\( f(x) = \sqrt[4]{x^6} \)[/tex].
Rewriting the function in exponential form:
[tex]\[ f(x) = x^{6/4} \][/tex]
[tex]\[ f(x) = x^{3/2} \][/tex]
Now we differentiate [tex]\( f(x) = x^{3/2} \)[/tex]:
1. Recall the power rule for differentiation, which states that if [tex]\( f(x) = x^n \)[/tex] where [tex]\( n \)[/tex] is any real number, then [tex]\( f'(x) = nx^{n-1} \)[/tex].
2. For our function [tex]\( f(x) = x^{3/2} \)[/tex]:
[tex]\[ f'(x) = \frac{3}{2} x^{\frac{3}{2} - 1} \][/tex]
3. Simplify the exponent:
[tex]\[ f'(x) = \frac{3}{2} x^{\frac{1}{2}} \][/tex]
4. Rewrite the simplified answer:
[tex]\[ f'(x) = 1.5 x^{0.5} \][/tex]
Thus, the derivative of [tex]\( f(x) = x^{3/2} \)[/tex] is:
[tex]\[ f'(x) = 1.5 x^{0.5} \][/tex]
### Problem 3.4: Differentiate from first principles if [tex]\( f(x) = \frac{2}{x^4} \)[/tex]
First, we need to rewrite the function [tex]\( f(x) \)[/tex] in a form that makes differentiation easier.
Rewriting [tex]\( f(x) = \frac{2}{x^4} \)[/tex] as [tex]\( f(x) = 2x^{-4} \)[/tex]:
Now we differentiate [tex]\( f(x) = 2x^{-4} \)[/tex]:
1. Recall the power rule for differentiation: [tex]\( f(x) = x^n \)[/tex] implies [tex]\( f'(x) = nx^{n-1} \)[/tex].
2. For our function [tex]\( f(x) = 2x^{-4} \)[/tex]:
[tex]\[ f'(x) = 2 \cdot (-4) x^{-4 - 1} \][/tex]
3. Simplify the expression:
[tex]\[ f'(x) = -8 x^{-5} \][/tex]
4. Rewrite the simplified answer in a fraction form:
[tex]\[ f'(x) = -\frac{8}{x^5} \][/tex]
Thus, the derivative of [tex]\( f(x) = 2x^{-4} \)[/tex] is:
[tex]\[ f'(x) = -\frac{8}{x^5} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.