Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's tackle the differentiation of the given functions step by step.
### Problem 3.3: Differentiate from first principles if [tex]\( f(x)=\sqrt[4]{x^6} \)[/tex]
First, we need to simplify the function [tex]\( f(x) = \sqrt[4]{x^6} \)[/tex].
Rewriting the function in exponential form:
[tex]\[ f(x) = x^{6/4} \][/tex]
[tex]\[ f(x) = x^{3/2} \][/tex]
Now we differentiate [tex]\( f(x) = x^{3/2} \)[/tex]:
1. Recall the power rule for differentiation, which states that if [tex]\( f(x) = x^n \)[/tex] where [tex]\( n \)[/tex] is any real number, then [tex]\( f'(x) = nx^{n-1} \)[/tex].
2. For our function [tex]\( f(x) = x^{3/2} \)[/tex]:
[tex]\[ f'(x) = \frac{3}{2} x^{\frac{3}{2} - 1} \][/tex]
3. Simplify the exponent:
[tex]\[ f'(x) = \frac{3}{2} x^{\frac{1}{2}} \][/tex]
4. Rewrite the simplified answer:
[tex]\[ f'(x) = 1.5 x^{0.5} \][/tex]
Thus, the derivative of [tex]\( f(x) = x^{3/2} \)[/tex] is:
[tex]\[ f'(x) = 1.5 x^{0.5} \][/tex]
### Problem 3.4: Differentiate from first principles if [tex]\( f(x) = \frac{2}{x^4} \)[/tex]
First, we need to rewrite the function [tex]\( f(x) \)[/tex] in a form that makes differentiation easier.
Rewriting [tex]\( f(x) = \frac{2}{x^4} \)[/tex] as [tex]\( f(x) = 2x^{-4} \)[/tex]:
Now we differentiate [tex]\( f(x) = 2x^{-4} \)[/tex]:
1. Recall the power rule for differentiation: [tex]\( f(x) = x^n \)[/tex] implies [tex]\( f'(x) = nx^{n-1} \)[/tex].
2. For our function [tex]\( f(x) = 2x^{-4} \)[/tex]:
[tex]\[ f'(x) = 2 \cdot (-4) x^{-4 - 1} \][/tex]
3. Simplify the expression:
[tex]\[ f'(x) = -8 x^{-5} \][/tex]
4. Rewrite the simplified answer in a fraction form:
[tex]\[ f'(x) = -\frac{8}{x^5} \][/tex]
Thus, the derivative of [tex]\( f(x) = 2x^{-4} \)[/tex] is:
[tex]\[ f'(x) = -\frac{8}{x^5} \][/tex]
### Problem 3.3: Differentiate from first principles if [tex]\( f(x)=\sqrt[4]{x^6} \)[/tex]
First, we need to simplify the function [tex]\( f(x) = \sqrt[4]{x^6} \)[/tex].
Rewriting the function in exponential form:
[tex]\[ f(x) = x^{6/4} \][/tex]
[tex]\[ f(x) = x^{3/2} \][/tex]
Now we differentiate [tex]\( f(x) = x^{3/2} \)[/tex]:
1. Recall the power rule for differentiation, which states that if [tex]\( f(x) = x^n \)[/tex] where [tex]\( n \)[/tex] is any real number, then [tex]\( f'(x) = nx^{n-1} \)[/tex].
2. For our function [tex]\( f(x) = x^{3/2} \)[/tex]:
[tex]\[ f'(x) = \frac{3}{2} x^{\frac{3}{2} - 1} \][/tex]
3. Simplify the exponent:
[tex]\[ f'(x) = \frac{3}{2} x^{\frac{1}{2}} \][/tex]
4. Rewrite the simplified answer:
[tex]\[ f'(x) = 1.5 x^{0.5} \][/tex]
Thus, the derivative of [tex]\( f(x) = x^{3/2} \)[/tex] is:
[tex]\[ f'(x) = 1.5 x^{0.5} \][/tex]
### Problem 3.4: Differentiate from first principles if [tex]\( f(x) = \frac{2}{x^4} \)[/tex]
First, we need to rewrite the function [tex]\( f(x) \)[/tex] in a form that makes differentiation easier.
Rewriting [tex]\( f(x) = \frac{2}{x^4} \)[/tex] as [tex]\( f(x) = 2x^{-4} \)[/tex]:
Now we differentiate [tex]\( f(x) = 2x^{-4} \)[/tex]:
1. Recall the power rule for differentiation: [tex]\( f(x) = x^n \)[/tex] implies [tex]\( f'(x) = nx^{n-1} \)[/tex].
2. For our function [tex]\( f(x) = 2x^{-4} \)[/tex]:
[tex]\[ f'(x) = 2 \cdot (-4) x^{-4 - 1} \][/tex]
3. Simplify the expression:
[tex]\[ f'(x) = -8 x^{-5} \][/tex]
4. Rewrite the simplified answer in a fraction form:
[tex]\[ f'(x) = -\frac{8}{x^5} \][/tex]
Thus, the derivative of [tex]\( f(x) = 2x^{-4} \)[/tex] is:
[tex]\[ f'(x) = -\frac{8}{x^5} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.