Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which of the given numbers are solutions to the quadratic equation [tex]\( x^2 + x - 20 = 0 \)[/tex], we will substitute each option into the equation and see if the left-hand side equals the right-hand side (which is 0).
Let's check each option:
### Option A: [tex]\( x = 4 \)[/tex]
Substitute [tex]\( x = 4 \)[/tex] into the equation:
[tex]\[ 4^2 + 4 - 20 = 16 + 4 - 20 = 20 - 20 = 0 \][/tex]
Since the equation holds true for [tex]\( x = 4 \)[/tex], this is a solution.
### Option B: [tex]\( x = -5 \)[/tex]
Substitute [tex]\( x = -5 \)[/tex] into the equation:
[tex]\[ (-5)^2 + (-5) - 20 = 25 - 5 - 20 = 25 - 25 = 0 \][/tex]
Since the equation holds true for [tex]\( x = -5 \)[/tex], this is a solution.
### Option C: [tex]\( x = -20 \)[/tex]
Substitute [tex]\( x = -20 \)[/tex] into the equation:
[tex]\[ (-20)^2 + (-20) - 20 = 400 - 20 - 20 = 400 - 40 = 360 \][/tex]
Since the equation does not hold true for [tex]\( x = -20 \)[/tex], this is not a solution.
### Option D: [tex]\( x = -4 \)[/tex]
Substitute [tex]\( x = -4 \)[/tex] into the equation:
[tex]\[ (-4)^2 + (-4) - 20 = 16 - 4 - 20 = 16 - 24 = -8 \][/tex]
Since the equation does not hold true for [tex]\( x = -4 \)[/tex], this is not a solution.
### Option E: [tex]\( x = 5 \)[/tex]
Substitute [tex]\( x = 5 \)[/tex] into the equation:
[tex]\[ 5^2 + 5 - 20 = 25 + 5 - 20 = 30 - 20 = 10 \][/tex]
Since the equation does not hold true for [tex]\( x = 5 \)[/tex], this is not a solution.
### Summary
The numbers that satisfy the equation [tex]\( x^2 + x - 20 = 0 \)[/tex] are:
- 4
- -5
Thus, the correct solutions are:
- Option A: 4
- Option B: -5
Let's check each option:
### Option A: [tex]\( x = 4 \)[/tex]
Substitute [tex]\( x = 4 \)[/tex] into the equation:
[tex]\[ 4^2 + 4 - 20 = 16 + 4 - 20 = 20 - 20 = 0 \][/tex]
Since the equation holds true for [tex]\( x = 4 \)[/tex], this is a solution.
### Option B: [tex]\( x = -5 \)[/tex]
Substitute [tex]\( x = -5 \)[/tex] into the equation:
[tex]\[ (-5)^2 + (-5) - 20 = 25 - 5 - 20 = 25 - 25 = 0 \][/tex]
Since the equation holds true for [tex]\( x = -5 \)[/tex], this is a solution.
### Option C: [tex]\( x = -20 \)[/tex]
Substitute [tex]\( x = -20 \)[/tex] into the equation:
[tex]\[ (-20)^2 + (-20) - 20 = 400 - 20 - 20 = 400 - 40 = 360 \][/tex]
Since the equation does not hold true for [tex]\( x = -20 \)[/tex], this is not a solution.
### Option D: [tex]\( x = -4 \)[/tex]
Substitute [tex]\( x = -4 \)[/tex] into the equation:
[tex]\[ (-4)^2 + (-4) - 20 = 16 - 4 - 20 = 16 - 24 = -8 \][/tex]
Since the equation does not hold true for [tex]\( x = -4 \)[/tex], this is not a solution.
### Option E: [tex]\( x = 5 \)[/tex]
Substitute [tex]\( x = 5 \)[/tex] into the equation:
[tex]\[ 5^2 + 5 - 20 = 25 + 5 - 20 = 30 - 20 = 10 \][/tex]
Since the equation does not hold true for [tex]\( x = 5 \)[/tex], this is not a solution.
### Summary
The numbers that satisfy the equation [tex]\( x^2 + x - 20 = 0 \)[/tex] are:
- 4
- -5
Thus, the correct solutions are:
- Option A: 4
- Option B: -5
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.