Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Question 1 (Essay Worth 4 points)

What is the remainder of [tex]\frac{5x^3 + 7x + 5}{x + 2}[/tex]? Show all necessary steps.


Sagot :

To find the remainder of the division of [tex]\(\frac{5x^3 + 7x + 5}{x + 2}\)[/tex], we need to use polynomial long division or synthetic division. Here's the detailed step-by-step process for polynomial long division:

1. Set up the division: We write [tex]\(5x^3 + 7x + 5\)[/tex] as the dividend and [tex]\(x + 2\)[/tex] as the divisor.

[tex]\[ \text{Dividend: } (5x^3 + 0x^2 + 7x + 5) \\ \text{Divisor: } (x + 2) \][/tex]

2. Divide the leading term of the dividend by the leading term of the divisor: Divide [tex]\(5x^3\)[/tex] by [tex]\(x\)[/tex].

[tex]\[ \frac{5x^3}{x} = 5x^2 \][/tex]

3. Multiply the entire divisor by the result from step 2: Multiply [tex]\(x + 2\)[/tex] by [tex]\(5x^2\)[/tex].

[tex]\[ (5x^2)(x + 2) = 5x^3 + 10x^2 \][/tex]

4. Subtract this result from the original dividend:

[tex]\[ (5x^3 + 0x^2 + 7x + 5) - (5x^3 + 10x^2) = 0x^3 - 10x^2 + 7x + 5 = -10x^2 + 7x + 5 \][/tex]

5. Repeat the process with the new polynomial:
- Divide [tex]\(-10x^2\)[/tex] by [tex]\(x\)[/tex].

[tex]\[ \frac{-10x^2}{x} = -10x \][/tex]

- Multiply the entire divisor by the result.

[tex]\[ (-10x)(x + 2) = -10x^2 - 20x \][/tex]

- Subtract this from [tex]\(-10x^2 + 7x + 5\)[/tex].

[tex]\[ (-10x^2 + 7x + 5) - (-10x^2 - 20x) = 0x^2 + 27x + 5 = 27x + 5 \][/tex]

6. Continue the process:
- Divide [tex]\(27x\)[/tex] by [tex]\(x\)[/tex].

[tex]\[ \frac{27x}{x} = 27 \][/tex]

- Multiply the entire divisor by the result.

[tex]\[ (27)(x + 2) = 27x + 54 \][/tex]

- Subtract this from [tex]\(27x + 5\)[/tex].

[tex]\[ (27x + 5) - (27x + 54) = 5 - 54 = -49 \][/tex]

Since [tex]\(x + 2\)[/tex] is now a degree higher than any remaining polynomial term, the remainder is the last result obtained:

Remainder: [tex]\(-49\)[/tex]

Therefore, the remainder when dividing [tex]\(5x^3 + 7x + 5\)[/tex] by [tex]\(x + 2\)[/tex] is [tex]\(-49\)[/tex].