Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To fill in the blanks in the equation [tex]\((x + \ldots)^2 = x^2 + 6x + \ldots\)[/tex], we need to match the given equation with the standard form of a binomial expansion. Let's follow these steps:
1. Understand the Binomial Expansion:
The general form of the binomial expansion for [tex]\((x + a)^2\)[/tex] is:
[tex]\[ (x + a)^2 = x^2 + 2ax + a^2 \][/tex]
2. Compare with the Given Equation:
We compare this to the given equation:
[tex]\[ (x + \ldots)^2 = x^2 + 6x + \ldots \][/tex]
3. Identify the Coefficient of the Linear Term:
From the expansion, the coefficient of the [tex]\(x\)[/tex] term in [tex]\((x + a)^2\)[/tex] is [tex]\(2a\)[/tex]. In the given equation, the coefficient of [tex]\(x\)[/tex] is 6. Therefore, we set up the equation:
[tex]\[ 2a = 6 \][/tex]
4. Solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{6}{2} = 3 \][/tex]
5. Identify the Constant Term:
The constant term in the binomial expansion [tex]\((x + a)^2\)[/tex] is [tex]\(a^2\)[/tex]. So, substituting [tex]\(a = 3\)[/tex], we get:
[tex]\[ a^2 = 3^2 = 9 \][/tex]
6. Fill in the Blanks:
Thus, the modified equation is:
[tex]\[ (x + 3)^2 = x^2 + 6x + 9 \][/tex]
Therefore, the numbers to fill in the blanks are [tex]\(\boxed{3}\)[/tex] and [tex]\(\boxed{9}\)[/tex].
1. Understand the Binomial Expansion:
The general form of the binomial expansion for [tex]\((x + a)^2\)[/tex] is:
[tex]\[ (x + a)^2 = x^2 + 2ax + a^2 \][/tex]
2. Compare with the Given Equation:
We compare this to the given equation:
[tex]\[ (x + \ldots)^2 = x^2 + 6x + \ldots \][/tex]
3. Identify the Coefficient of the Linear Term:
From the expansion, the coefficient of the [tex]\(x\)[/tex] term in [tex]\((x + a)^2\)[/tex] is [tex]\(2a\)[/tex]. In the given equation, the coefficient of [tex]\(x\)[/tex] is 6. Therefore, we set up the equation:
[tex]\[ 2a = 6 \][/tex]
4. Solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{6}{2} = 3 \][/tex]
5. Identify the Constant Term:
The constant term in the binomial expansion [tex]\((x + a)^2\)[/tex] is [tex]\(a^2\)[/tex]. So, substituting [tex]\(a = 3\)[/tex], we get:
[tex]\[ a^2 = 3^2 = 9 \][/tex]
6. Fill in the Blanks:
Thus, the modified equation is:
[tex]\[ (x + 3)^2 = x^2 + 6x + 9 \][/tex]
Therefore, the numbers to fill in the blanks are [tex]\(\boxed{3}\)[/tex] and [tex]\(\boxed{9}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.