Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Claro, vamos a resolver paso a paso el problema.
Primero, identificamos los datos del problema:
- Masa de [tex]\( P_4 \)[/tex]: 5.00 g
- Masa de [tex]\( Br_2 \)[/tex]: 40.5 g
- Reacción: [tex]\( P_4 + 6Br_2 \rightarrow 4PBr_3 \)[/tex]
a) Determinar el reactivo limitante:
1. Calcular las masas molares:
- Molaridad de [tex]\( P_4 \)[/tex]: La masa molar del fósforo (P) es 30.97 g/mol. Para [tex]\( P_4 \)[/tex]:
[tex]\[ \text{masa molar de } P_4 = 4 \times 30.97 = 123.88 \text{ g/mol} \][/tex]
- Molaridad de [tex]\( Br_2 \)[/tex]: La masa molar del bromo (Br) es 79.904 g/mol. Para [tex]\( Br_2 \)[/tex]:
[tex]\[ \text{masa molar de } Br_2 = 2 \times 79.904 = 159.808 \text{ g/mol} \][/tex]
- Molaridad de [tex]\( PBr_3 \)[/tex]: La masa molar de [tex]\( PBr_3 \)[/tex] se calcula sumando la masa de un átomo de fósforo y tres átomos de bromo.
[tex]\[ \text{masa molar de } PBr_3 = 30.97 + 3 \times 79.904 = 270.682 \text{ g/mol} \][/tex]
2. Calcular los moles de cada reactivo:
- Moles de [tex]\( P_4 \)[/tex]:
[tex]\[ \text{moles de } P_4 = \frac{5.00 \text{ g}}{123.88 \text{ g/mol}} \approx 0.04037 \text{ mol} \][/tex]
- Moles de [tex]\( Br_2 \)[/tex]:
[tex]\[ \text{moles de } Br_2 = \frac{40.5 \text{ g}}{159.808 \text{ g/mol}} \approx 0.25346 \text{ mol} \][/tex]
3. Determinar el reactivo limitante:
La reacción requiere 6 moles de [tex]\( Br_2 \)[/tex] por cada mol de [tex]\( P_4 \)[/tex]. Por lo tanto, necesitamos:
[tex]\[ 6 \times 0.04037 \text{ mol de } Br_2 \approx 0.24222 \text{ mol de } Br_2 \][/tex]
Comparando con los moles disponibles de [tex]\( Br_2 \)[/tex]:
- [tex]\( Br_2 \)[/tex] disponible: 0.25346 mol
- [tex]\( Br_2 \)[/tex] requerido: 0.24222 mol
Dado que tenemos suficiente [tex]\( Br_2 \)[/tex], el fósforo ([tex]\( P_4 \)[/tex]) es el reactivo limitante.
b) Gramos de [tex]\( PBr_3 \)[/tex] formados:
1. De la ecuación estequiométrica, 1 mol de [tex]\( P_4 \)[/tex] produce 4 moles de [tex]\( PBr_3 \)[/tex]:
[tex]\[ 0.04037 \text{ moles de } P_4 \times 4 \text{ mol } PBr_3/\text{mol } P_4 = 0.16148 \text{ mol de } PBr_3 \][/tex]
2. Convertir moles de [tex]\( PBr_3 \)[/tex] a gramos:
[tex]\[ \text{masa de } PBr_3 = 0.16148 \text{ mol} \times 270.682 \text{ g/mol} \approx 43.70 \text{ g} \][/tex]
c) Gramos de reactivo en exceso:
1. Verificar moles de [tex]\( Br_2 \)[/tex] utilizados:
[tex]\[ \text{moles de } Br_2 \text{ utilizados} = 6 \times 0.04037 \approx 0.24222 \text{ mol} \][/tex]
2. Calcular moles de [tex]\( Br_2 \)[/tex] en exceso:
[tex]\[ \text{moles de } Br_2 \text{ en exceso} = 0.25346 - 0.24222 \approx 0.01124 \text{ mol} \][/tex]
3. Convertir moles de [tex]\( Br_2 \)[/tex] en exceso a gramos:
[tex]\[ \text{masa de } Br_2 \text{ en exceso} = 0.01124 \text{ mol} \times 159.808 \text{ g/mol} \approx 1.80 \text{ g} \][/tex]
d) Porcentaje de rendimiento:
1. Producción teórica de PBr_3:
[tex]\[ 43.70 \text{ g} \][/tex]
2. Porcentaje de rendimiento:
[tex]\[ \text{rendimiento} = \left( \frac{37.5 \text{ g}}{43.7 \text{ g}} \right) \times 100 \approx 85.81\% \][/tex]
En resumen:
a) El reactivo limitante es [tex]\( P_4 \)[/tex].
b) Se forman aproximadamente 43.70 gramos de [tex]\( PBr_3 \)[/tex].
c) Quedan aproximadamente 1.80 gramos de [tex]\( Br_2 \)[/tex] en exceso.
d) El porcentaje de rendimiento es aproximadamente 85.81%.
Primero, identificamos los datos del problema:
- Masa de [tex]\( P_4 \)[/tex]: 5.00 g
- Masa de [tex]\( Br_2 \)[/tex]: 40.5 g
- Reacción: [tex]\( P_4 + 6Br_2 \rightarrow 4PBr_3 \)[/tex]
a) Determinar el reactivo limitante:
1. Calcular las masas molares:
- Molaridad de [tex]\( P_4 \)[/tex]: La masa molar del fósforo (P) es 30.97 g/mol. Para [tex]\( P_4 \)[/tex]:
[tex]\[ \text{masa molar de } P_4 = 4 \times 30.97 = 123.88 \text{ g/mol} \][/tex]
- Molaridad de [tex]\( Br_2 \)[/tex]: La masa molar del bromo (Br) es 79.904 g/mol. Para [tex]\( Br_2 \)[/tex]:
[tex]\[ \text{masa molar de } Br_2 = 2 \times 79.904 = 159.808 \text{ g/mol} \][/tex]
- Molaridad de [tex]\( PBr_3 \)[/tex]: La masa molar de [tex]\( PBr_3 \)[/tex] se calcula sumando la masa de un átomo de fósforo y tres átomos de bromo.
[tex]\[ \text{masa molar de } PBr_3 = 30.97 + 3 \times 79.904 = 270.682 \text{ g/mol} \][/tex]
2. Calcular los moles de cada reactivo:
- Moles de [tex]\( P_4 \)[/tex]:
[tex]\[ \text{moles de } P_4 = \frac{5.00 \text{ g}}{123.88 \text{ g/mol}} \approx 0.04037 \text{ mol} \][/tex]
- Moles de [tex]\( Br_2 \)[/tex]:
[tex]\[ \text{moles de } Br_2 = \frac{40.5 \text{ g}}{159.808 \text{ g/mol}} \approx 0.25346 \text{ mol} \][/tex]
3. Determinar el reactivo limitante:
La reacción requiere 6 moles de [tex]\( Br_2 \)[/tex] por cada mol de [tex]\( P_4 \)[/tex]. Por lo tanto, necesitamos:
[tex]\[ 6 \times 0.04037 \text{ mol de } Br_2 \approx 0.24222 \text{ mol de } Br_2 \][/tex]
Comparando con los moles disponibles de [tex]\( Br_2 \)[/tex]:
- [tex]\( Br_2 \)[/tex] disponible: 0.25346 mol
- [tex]\( Br_2 \)[/tex] requerido: 0.24222 mol
Dado que tenemos suficiente [tex]\( Br_2 \)[/tex], el fósforo ([tex]\( P_4 \)[/tex]) es el reactivo limitante.
b) Gramos de [tex]\( PBr_3 \)[/tex] formados:
1. De la ecuación estequiométrica, 1 mol de [tex]\( P_4 \)[/tex] produce 4 moles de [tex]\( PBr_3 \)[/tex]:
[tex]\[ 0.04037 \text{ moles de } P_4 \times 4 \text{ mol } PBr_3/\text{mol } P_4 = 0.16148 \text{ mol de } PBr_3 \][/tex]
2. Convertir moles de [tex]\( PBr_3 \)[/tex] a gramos:
[tex]\[ \text{masa de } PBr_3 = 0.16148 \text{ mol} \times 270.682 \text{ g/mol} \approx 43.70 \text{ g} \][/tex]
c) Gramos de reactivo en exceso:
1. Verificar moles de [tex]\( Br_2 \)[/tex] utilizados:
[tex]\[ \text{moles de } Br_2 \text{ utilizados} = 6 \times 0.04037 \approx 0.24222 \text{ mol} \][/tex]
2. Calcular moles de [tex]\( Br_2 \)[/tex] en exceso:
[tex]\[ \text{moles de } Br_2 \text{ en exceso} = 0.25346 - 0.24222 \approx 0.01124 \text{ mol} \][/tex]
3. Convertir moles de [tex]\( Br_2 \)[/tex] en exceso a gramos:
[tex]\[ \text{masa de } Br_2 \text{ en exceso} = 0.01124 \text{ mol} \times 159.808 \text{ g/mol} \approx 1.80 \text{ g} \][/tex]
d) Porcentaje de rendimiento:
1. Producción teórica de PBr_3:
[tex]\[ 43.70 \text{ g} \][/tex]
2. Porcentaje de rendimiento:
[tex]\[ \text{rendimiento} = \left( \frac{37.5 \text{ g}}{43.7 \text{ g}} \right) \times 100 \approx 85.81\% \][/tex]
En resumen:
a) El reactivo limitante es [tex]\( P_4 \)[/tex].
b) Se forman aproximadamente 43.70 gramos de [tex]\( PBr_3 \)[/tex].
c) Quedan aproximadamente 1.80 gramos de [tex]\( Br_2 \)[/tex] en exceso.
d) El porcentaje de rendimiento es aproximadamente 85.81%.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.