Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the graph of the function [tex]\( g(x) = (x-2)^2 \)[/tex] using transformations of the graph of [tex]\( f(x) = x^2 \)[/tex], we will follow a step-by-step process to understand how the graph of [tex]\( f(x) \)[/tex] changes to become the graph of [tex]\( g(x) \)[/tex].
### Step-by-Step Transformation:
1. Identify the Base Function:
- The base function is [tex]\( f(x) = x^2 \)[/tex].
- This is a standard parabola that opens upwards and has its vertex at the origin [tex]\((0, 0)\)[/tex].
2. Understand the Transformation:
- The transformation given is [tex]\( g(x) = (x-2)^2 \)[/tex].
- This specific form indicates that the transformation involves a horizontal shift.
3. Determine the Nature of the Shift:
- In the function [tex]\( g(x) = (x - 2)^2 \)[/tex], the [tex]\((x - 2)\)[/tex] inside the function causes a horizontal shift to the right.
- The general form [tex]\( (x - h) \)[/tex] represents a horizontal shift by [tex]\( h \)[/tex] units to the right if [tex]\( h \)[/tex] is positive and to the left if [tex]\( h \)[/tex] is negative.
4. Apply the Horizontal Shift:
- Here, [tex]\( h = 2 \)[/tex] because we have [tex]\( (x - 2) \)[/tex].
- Therefore, every point on the graph of [tex]\( f(x) = x^2 \)[/tex] will be shifted 2 units to the right.
### Constructing the New Graph:
- The vertex of [tex]\( f(x) = x^2 \)[/tex] is at [tex]\((0, 0)\)[/tex].
- Applying the horizontal shift of 2 units to the right:
- The new vertex of [tex]\( g(x) = (x-2)^2 \)[/tex] will be at [tex]\((2, 0)\)[/tex].
- For other points on the graph:
- Consider a point [tex]\( (a, f(a)) \)[/tex] on the graph of [tex]\( f(x) \)[/tex].
- After shifting this point 2 units to the right, the new point becomes [tex]\( (a+2, f(a)) \)[/tex] for the graph of [tex]\( g(x) \)[/tex].
- Example of points for illustration:
- Point [tex]\((1, 1)\)[/tex] on [tex]\( f(x) \)[/tex] becomes [tex]\((3, 1)\)[/tex] on [tex]\( g(x) \)[/tex].
- Point [tex]\((-1, 1)\)[/tex] on [tex]\( f(x) \)[/tex] becomes [tex]\((1, 1)\)[/tex] on [tex]\( g(x) \)[/tex].
### Summary of Transformation:
- The original function [tex]\( f(x) = x^2 \)[/tex] represents a parabola centered at [tex]\((0, 0)\)[/tex].
- The function [tex]\( g(x) = (x-2)^2 \)[/tex] represents the same parabola shifted 2 units to the right, centering the vertex at [tex]\((2, 0)\)[/tex].
Thus, the graph of [tex]\( g(x) = (x-2)^2 \)[/tex] is the graph of [tex]\( f(x) = x^2 \)[/tex] shifted 2 units to the right.
### Step-by-Step Transformation:
1. Identify the Base Function:
- The base function is [tex]\( f(x) = x^2 \)[/tex].
- This is a standard parabola that opens upwards and has its vertex at the origin [tex]\((0, 0)\)[/tex].
2. Understand the Transformation:
- The transformation given is [tex]\( g(x) = (x-2)^2 \)[/tex].
- This specific form indicates that the transformation involves a horizontal shift.
3. Determine the Nature of the Shift:
- In the function [tex]\( g(x) = (x - 2)^2 \)[/tex], the [tex]\((x - 2)\)[/tex] inside the function causes a horizontal shift to the right.
- The general form [tex]\( (x - h) \)[/tex] represents a horizontal shift by [tex]\( h \)[/tex] units to the right if [tex]\( h \)[/tex] is positive and to the left if [tex]\( h \)[/tex] is negative.
4. Apply the Horizontal Shift:
- Here, [tex]\( h = 2 \)[/tex] because we have [tex]\( (x - 2) \)[/tex].
- Therefore, every point on the graph of [tex]\( f(x) = x^2 \)[/tex] will be shifted 2 units to the right.
### Constructing the New Graph:
- The vertex of [tex]\( f(x) = x^2 \)[/tex] is at [tex]\((0, 0)\)[/tex].
- Applying the horizontal shift of 2 units to the right:
- The new vertex of [tex]\( g(x) = (x-2)^2 \)[/tex] will be at [tex]\((2, 0)\)[/tex].
- For other points on the graph:
- Consider a point [tex]\( (a, f(a)) \)[/tex] on the graph of [tex]\( f(x) \)[/tex].
- After shifting this point 2 units to the right, the new point becomes [tex]\( (a+2, f(a)) \)[/tex] for the graph of [tex]\( g(x) \)[/tex].
- Example of points for illustration:
- Point [tex]\((1, 1)\)[/tex] on [tex]\( f(x) \)[/tex] becomes [tex]\((3, 1)\)[/tex] on [tex]\( g(x) \)[/tex].
- Point [tex]\((-1, 1)\)[/tex] on [tex]\( f(x) \)[/tex] becomes [tex]\((1, 1)\)[/tex] on [tex]\( g(x) \)[/tex].
### Summary of Transformation:
- The original function [tex]\( f(x) = x^2 \)[/tex] represents a parabola centered at [tex]\((0, 0)\)[/tex].
- The function [tex]\( g(x) = (x-2)^2 \)[/tex] represents the same parabola shifted 2 units to the right, centering the vertex at [tex]\((2, 0)\)[/tex].
Thus, the graph of [tex]\( g(x) = (x-2)^2 \)[/tex] is the graph of [tex]\( f(x) = x^2 \)[/tex] shifted 2 units to the right.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.