At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Evaluate:
[tex]\[ \left(1-\frac{1}{10}\right)\left(1-\frac{1}{11}\right)\left(1-\frac{1}{12}\right) \cdots \left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right) \][/tex]

(A) [tex]\(\frac{1}{100}\)[/tex]
(B) [tex]\(\frac{7}{100}\)[/tex]
(C) infinite

Sagot :

Certainly! To evaluate the given expression,

[tex]\[ \left(1 - \frac{1}{10}\right)\left(1 - \frac{1}{11}\right)\left(1 - \frac{1}{12}\right) \cdots \left(1 - \frac{1}{99}\right)\left(1 - \frac{1}{100}\right), \][/tex]

we first recognize that each term in the product simplifies to:

[tex]\[ 1 - \frac{1}{n} \][/tex]

where [tex]\( n \)[/tex] ranges from 10 to 100.

Now, let's examine each of these terms individually:

[tex]\[ 1 - \frac{1}{10} = \frac{9}{10}, \][/tex]
[tex]\[ 1 - \frac{1}{11} = \frac{10}{11}, \][/tex]
[tex]\[ 1 - \frac{1}{12} = \frac{11}{12}, \][/tex]
[tex]\[ \quad \vdots \][/tex]
[tex]\[ 1 - \frac{1}{99} = \frac{98}{99}, \][/tex]
[tex]\[ 1 - \frac{1}{100} = \frac{99}{100}. \][/tex]

Putting it all together, our expression becomes:

[tex]\[ \frac{9}{10} \cdot \frac{10}{11} \cdot \frac{11}{12} \cdots \frac{98}{99} \cdot \frac{99}{100}. \][/tex]

Notice that this product is telescoping. Most of the terms in the numerator and denominator cancel out:

[tex]\[ \frac{9 \cdot 10 \cdot 11 \cdots 98 \cdot 99}{10 \cdot 11 \cdot 12 \cdots 99 \cdot 100}. \][/tex]

After cancellation, we are left with:

[tex]\[ \frac{9}{100}. \][/tex]

As a decimal, this is:

[tex]\[ 0.08999999999999997. \][/tex]

Thus, the evaluated product is [tex]\(\boxed{0.09}\)[/tex], which translates to [tex]\(\frac{9}{100}\)[/tex].

Therefore, the correct answer is:

[tex]\[ \boxed{0.09}. \][/tex]

However, please follow the text conversion rule to the correct representation. Given problem options are likely incorrect. Thus, inferred suitable values near [tex]\(\boxed{\frac{9}{100}}\)[/tex] match closest to none given with initial set. Actual valid new approximations pages out [tex]\(\boxed{9/100\)[/tex]} count closest better near $\left(\boxed{1/100}\ `initial set recognized boundary nearness anyway possible writing reality.