At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the graph of the given function [tex]\( h(x) = -(x+5)^2 \)[/tex] through transformations of the parent function [tex]\( f(x) = x^2 \)[/tex], follow these steps:
1. Start with the parent function [tex]\( f(x) = x^2 \)[/tex]:
This is a basic parabola that opens upwards, with its vertex at the origin [tex]\((0, 0)\)[/tex].
2. Apply a horizontal shift to the left by 5 units:
To shift the graph of [tex]\( f(x) = x^2 \)[/tex] horizontally to the left by 5 units, replace [tex]\( x \)[/tex] with [tex]\( x + 5 \)[/tex]. This gives us the function [tex]\( g(x) = (x + 5)^2 \)[/tex].
The graph of [tex]\( g(x) = (x + 5)^2 \)[/tex] is still a parabola that opens upwards, but its vertex is now shifted to the point [tex]\((-5, 0)\)[/tex].
3. Reflect across the x-axis:
To reflect the graph of [tex]\( g(x) = (x + 5)^2 \)[/tex] across the x-axis, multiply the function by [tex]\(-1\)[/tex]. This transformation gives us [tex]\( h(x) = -(x + 5)^2 \)[/tex].
The graph of [tex]\( h(x) = -(x + 5)^2 \)[/tex] is a parabola that opens downwards, and its vertex remains at the point [tex]\((-5, 0)\)[/tex].
4. Verification of points:
We can calculate specific points to illustrate how the transformations affect some key values. Consider the x-values [tex]\(-6, -5, -4, 0, 4\)[/tex] and determine the corresponding y-values for [tex]\( h(x) = -(x+5)^2 \)[/tex]:
- For [tex]\( x = -6 \)[/tex]:
[tex]\[ h(-6) = -(-6 + 5)^2 = -1^2 = -1 \][/tex]
- For [tex]\( x = -5 \)[/tex]:
[tex]\[ h(-5) = -(-5 + 5)^2 = -0^2 = 0 \][/tex]
- For [tex]\( x = -4 \)[/tex]:
[tex]\[ h(-4) = -(-4 + 5)^2 = -1^2 = -1 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ h(0) = -(0 + 5)^2 = -5^2 = -25 \][/tex]
- For [tex]\( x = 4 \)[/tex]:
[tex]\[ h(4) = -(4 + 5)^2 = -9^2 = -81 \][/tex]
So, the specific points on the graph of [tex]\( h(x) = -(x+5)^2 \)[/tex] are as follows:
[tex]\[ (-6, -1), (-5, 0), (-4, -1), (0, -25), (4, -81) \][/tex]
These points confirm the transformations applied to the parent function [tex]\( f(x) = x^2 \)[/tex]. The graph of [tex]\( h(x) = -(x+5)^2 \)[/tex] is a downward-opening parabola with its vertex at [tex]\((-5, 0)\)[/tex], and it is horizontally shifted 5 units to the left and reflected across the x-axis from the graph of [tex]\( f(x) = x^2 \)[/tex].
1. Start with the parent function [tex]\( f(x) = x^2 \)[/tex]:
This is a basic parabola that opens upwards, with its vertex at the origin [tex]\((0, 0)\)[/tex].
2. Apply a horizontal shift to the left by 5 units:
To shift the graph of [tex]\( f(x) = x^2 \)[/tex] horizontally to the left by 5 units, replace [tex]\( x \)[/tex] with [tex]\( x + 5 \)[/tex]. This gives us the function [tex]\( g(x) = (x + 5)^2 \)[/tex].
The graph of [tex]\( g(x) = (x + 5)^2 \)[/tex] is still a parabola that opens upwards, but its vertex is now shifted to the point [tex]\((-5, 0)\)[/tex].
3. Reflect across the x-axis:
To reflect the graph of [tex]\( g(x) = (x + 5)^2 \)[/tex] across the x-axis, multiply the function by [tex]\(-1\)[/tex]. This transformation gives us [tex]\( h(x) = -(x + 5)^2 \)[/tex].
The graph of [tex]\( h(x) = -(x + 5)^2 \)[/tex] is a parabola that opens downwards, and its vertex remains at the point [tex]\((-5, 0)\)[/tex].
4. Verification of points:
We can calculate specific points to illustrate how the transformations affect some key values. Consider the x-values [tex]\(-6, -5, -4, 0, 4\)[/tex] and determine the corresponding y-values for [tex]\( h(x) = -(x+5)^2 \)[/tex]:
- For [tex]\( x = -6 \)[/tex]:
[tex]\[ h(-6) = -(-6 + 5)^2 = -1^2 = -1 \][/tex]
- For [tex]\( x = -5 \)[/tex]:
[tex]\[ h(-5) = -(-5 + 5)^2 = -0^2 = 0 \][/tex]
- For [tex]\( x = -4 \)[/tex]:
[tex]\[ h(-4) = -(-4 + 5)^2 = -1^2 = -1 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ h(0) = -(0 + 5)^2 = -5^2 = -25 \][/tex]
- For [tex]\( x = 4 \)[/tex]:
[tex]\[ h(4) = -(4 + 5)^2 = -9^2 = -81 \][/tex]
So, the specific points on the graph of [tex]\( h(x) = -(x+5)^2 \)[/tex] are as follows:
[tex]\[ (-6, -1), (-5, 0), (-4, -1), (0, -25), (4, -81) \][/tex]
These points confirm the transformations applied to the parent function [tex]\( f(x) = x^2 \)[/tex]. The graph of [tex]\( h(x) = -(x+5)^2 \)[/tex] is a downward-opening parabola with its vertex at [tex]\((-5, 0)\)[/tex], and it is horizontally shifted 5 units to the left and reflected across the x-axis from the graph of [tex]\( f(x) = x^2 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.