Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

c) An artificial satellite of the Earth revolves in a circular orbit at a height of [tex]35,900 \, \text{km}[/tex] above the Earth's surface. What are the orbital speed and the period of revolution of the satellite?

Given:
[tex]G = 6.67 \times 10^{-11} \, \text{Nm}^2 / \text{kg}^2[/tex]
[tex]R = 6.4 \times 10^6 \, \text{m}[/tex]
[tex]M_e = 6 \times 10^{24} \, \text{kg}[/tex]

Sagot :

Sure, let's solve this step-by-step. Given data:

- Gravitational constant, [tex]\( G = 6.67 \times 10^{-11} \, \text{Nm}^2 \, \text{kg}^{-2} \)[/tex]
- Radius of the Earth, [tex]\( R = 6.4 \times 10^6 \, \text{m} \)[/tex]
- Mass of the Earth, [tex]\( M_e = 6 \times 10^{24} \, \text{kg} \)[/tex]
- Height of the satellite above the Earth's surface, [tex]\( h = 35900 \, \text{km} = 35900 \times 10^3 \, \text{m} \)[/tex]

### Step 1: Calculate the total distance from the center of the Earth to the satellite.

The total distance [tex]\( r \)[/tex] from the center of the Earth to the satellite is given by the sum of the Earth's radius [tex]\( R \)[/tex] and the height of the satellite [tex]\( h \)[/tex]:

[tex]\[ r = R + h \][/tex]

Substitute the given values:

[tex]\[ r = 6.4 \times 10^6 \, \text{m} + 35900 \times 10^3 \, \text{m} = 42300 \times 10^3 \, \text{m} = 4.23 \times 10^7 \, \text{m} \][/tex]

### Step 2: Calculate the orbital speed of the satellite.

To calculate the orbital speed [tex]\( v \)[/tex], we use the formula given by:

[tex]\[ v = \sqrt{\frac{GM_e}{r}} \][/tex]

Substitute the given values for [tex]\( G \)[/tex], [tex]\( M_e \)[/tex], and [tex]\( r \)[/tex]:

[tex]\[ v = \sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{4.23 \times 10^7}} \][/tex]

Upon calculation, we find the orbital speed [tex]\( v \)[/tex]:

[tex]\[ v \approx 3075.87 \, \text{m/s} \][/tex]

### Step 3: Calculate the orbital period of the satellite.

The orbital period [tex]\( T \)[/tex] is the time it takes for the satellite to complete one full orbit around the Earth. It is given by the formula:

[tex]\[ T = \frac{2 \pi r}{v} \][/tex]

Substitute the values for [tex]\( r \)[/tex] and [tex]\( v \)[/tex]:

[tex]\[ T = \frac{2 \pi \times 4.23 \times 10^7 \, \text{m}}{3075.87 \, \text{m/s}} \][/tex]

Upon calculation, we find the orbital period [tex]\( T \)[/tex]:

[tex]\[ T \approx 86407.59 \, \text{s} \][/tex]

### Final Results:

1. The orbital speed of the satellite is approximately [tex]\( v \approx 3075.87 \, \text{m/s} \)[/tex].
2. The period of revolution (orbital period) of the satellite is approximately [tex]\( T \approx 86407.59 \, \text{s} \)[/tex].

These results represent the speed and the time it takes for the satellite to complete one full orbit around the Earth at the given altitude.