Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

12. In each of the following numbers, replace by the smallest number to make it divisible by:

(i) [tex]$65 \ \textless \ /em\ \textgreater \ 5$[/tex]

(ii) [tex]$2 \ \textless \ em\ \textgreater \ 135$[/tex]

(iii) [tex]$6702 \ \textless \ /em\ \textgreater \ $[/tex]

(iv) [tex]$91 \ \textless \ em\ \textgreater \ 67$[/tex]

(v) [tex]$6678 \ \textless \ /em\ \textgreater \ 1$[/tex]

(vi) [tex]$835 * 86$[/tex]


Sagot :

Alright! Let's solve each part step-by-step to find the smallest digit that can replace the asterisk () to make the given number divisible by the mentioned divisor.

### (i) [tex]\( 65
5 \)[/tex]: Make divisible by [tex]\( 5 \)[/tex]

For a number to be divisible by 5, its last digit must be either 0 or 5.

- If `` is replaced by [tex]\( 0 \)[/tex]: [tex]\( 6505 \)[/tex] - Not divisible by 5.
- If `
` is replaced by [tex]\( 1 \)[/tex]: [tex]\( 6515 \)[/tex] - Divisible by 5.
- If `` is replaced by [tex]\( 2 \)[/tex]: [tex]\( 6525 \)[/tex] - Divisible by 5.
- If `
` is replaced by [tex]\( 3 \)[/tex]: [tex]\( 6535 \)[/tex] - Divisible by 5.
- If `` is replaced by [tex]\( 4 \)[/tex]: [tex]\( 6545 \)[/tex] - Divisible by 5.
- If `
` is replaced by [tex]\( 0 \)[/tex]: [tex]\( 6500 \)[/tex] - Divisible by 5.

The smallest digit replacing `` in [tex]\( 65 5 \)[/tex] is [tex]\( \mathbf{0} \)[/tex].

### (ii) [tex]\( 2 135 \)[/tex]: Make divisible by [tex]\( 2 \)[/tex]

For a number to be divisible by 2, its last digit must be even.

- If `
` is replaced by [tex]\( 0 \)[/tex]: [tex]\( 2035 \)[/tex] - Not divisible by 2.
- If `` is replaced by [tex]\( 2 \)[/tex]: [tex]\( 2235 \)[/tex] - Not divisible by 2.
- If `
` is replaced by [tex]\( 4 \)[/tex]: [tex]\( 2435 \)[/tex] - Not divisible by 2.
- If `` is replaced by [tex]\( 6 \)[/tex]: [tex]\( 2635 \)[/tex] - Not divisible by 2.
- If `
` is replaced by [tex]\( 8 \)[/tex]: [tex]\( 2835 \)[/tex] - Not divisible by 2.

None of the replacements provide a divisible number by 2. The closest answer here is an incorrect number unless there's a typo.

### (iii) [tex]\( 6702 \)[/tex]: Make divisible by [tex]\( 3 \)[/tex]

For a number to be divisible by 3, the sum of its digits must be divisible by 3.

- Sum of known digits: [tex]\( 6 + 7 + 0 + 2 = 15 \)[/tex]
- Sum must still be divisible by 3; possible values for replacing [tex]\(
\)[/tex] could be:
- If `` is replaced by [tex]\( 0 \)[/tex]: [tex]\( 67020 \)[/tex] - Sum is 15, Divisible by 3.
- If `
` is replaced by [tex]\( 1 \)[/tex]: [tex]\( 67021 \)[/tex], sum is 16 - Not divisible by 3.
- If `` is replaced by [tex]\( 2 \)[/tex]: [tex]\( 67022 \)[/tex], sum is 17 - Not divisible by 3.

Thus, smallest digit is [tex]\( \mathbf{0} \)[/tex].

### (iv) [tex]\( 91
67 \)[/tex]: Make divisible by [tex]\( 7 \)[/tex]

Using digit replacement:
- If `` is replaced by [tex]\( 0 \)[/tex]: [tex]\( 91067 \)[/tex] - Not divisible by 7 (q = 13009, r = 4)
- If `
` is replaced by [tex]\( 1 \)[/tex]: [tex]\( 91167 \)[/tex] - Not divisible by 7 (q = 13023, r = 6)
- If `` is replaced by [tex]\( 2 \)[/tex]: [tex]\( 91267 \)[/tex] - Not divisible by 7 (q = 13037, r = 2)
- If `
` is replaced by [tex]\( 3 \)[/tex]: [tex]\( 91367 \)[/tex] - Divisible by 7 (q = 13052, r = 0)
- If `` is replaced by [tex]\( 4 \)[/tex]: [tex]\( 91467 \)[/tex] - Not divisible by 7 (q = 13066, r = 3)

So, the smallest digit is [tex]\( \mathbf{3} \)[/tex].

### (v) [tex]\( 6678
1 \)[/tex]: Make divisible by [tex]\( 11 \)[/tex]

For a number to be divisible by 11, the difference between the sum of digits in odd positions and the even positions should be a multiple of 11.

- Known digits [tex]\( 6,6,7,8 \)[/tex] and 1
- [tex]\(6+2+0+1=9-8=1\)[/tex]
- [tex]\(6-6+-10\)[/tex]

The sum is already a multiple of 11.

Thus the answer is [tex]\( \mathbf{0} \)[/tex].

### (vi) [tex]\( 835 86 \)[/tex]: Make divisible by [tex]\( 2 \)[/tex]

For a number to be divisible by 2, its last digit must be even.

- If `
` is replaced by [tex]\( 0 \)[/tex]: [tex]\( 835086 \)[/tex] - Divisible by 2.
- If `` is replaced by [tex]\( 1 \)[/tex]: [tex]\( 835186 \)[/tex] - Not divisible by 2.
- If `
` is replaced by [tex]\( 2 \)[/tex]: [tex]\( 835286 \)[/tex] - Divisible by 2.
- If `` is replaced by [tex]\( 3 \)[/tex]: [tex]\( 835386 \)[/tex] - Not divisible by 2.
- If `
` is replaced by [tex]\( 4 \)[/tex]: [tex]\( 835486 \)[/tex] - Divisible by 2.

The smallest value here smallest digit is [tex]\( \mathbf{0} \)[/tex].

Therefore, the answers to the parts are:
(i) [tex]\( 0 \)[/tex]
(ii) Not possible.
(iii) [tex]\( 0 \)[/tex]
(iv) [tex]\( 3 \)[/tex]
(v) [tex]\( 0 \)[/tex]
(vi) [tex]\( 0 \)[/tex]